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Abstract  

Gene set enrichment analysis (GSEA) for analyzing large profiling and screening 

experiments can reveal unifying biological schemes based on previously accumulated 

knowledge represented as “gene sets”. Most of the existing implementations use a 

fixed fold-change or P value cut-off to generate regulated gene lists. However, the 

threshold selection in most cases is arbitrary and has significant effect on the test 

outcome and interpretation of the experiment. 

 

We developed a new GSEA method, FDR-FET, which dynamically optimizes the 

threshold choice and improves sensitivity and selectivity of GSEA. The procedure 

translates experimental results into a series of regulated gene lists at multiple false 

discovery rate (FDR) cut-offs and computes the P value of the overrepresentation of a 

gene set using a Fisher’s exact test (FET) in each of these gene lists. The lowest P 

value is retained to represent the significance of the gene set. We also implement 

improved methods to define a more relevant global reference set for the FET.  

 

We demonstrate the validity of the method using a published microarray study of 

three HIV protease inhibitors and compare the results to those from other popular 

GSEA algorithms. Our results show that combining FDR with multiple cut-offs 

allows us to control the error while retaining genes that increase information content. 

We conclude that FDR-FET can selectively identify significant affected biological 

processes. Our method can be used for any user generated gene lists in the area of 

transcriptome, proteome and other biological and scientific applications. 
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Introduction  

Expression profiling analysis usually begins with the generation of gene lists ranked 

by fold-changes or P values. Interpretation of the gene lists can be facilitated by 

analytical approaches such as gene set enrichment analysis (GSEA)1, which utilizes 

priori constructed reference gene sets that groups genes by classifiers such as 

biological function or chromosome location (Ackermann and Strimmer 2009). This 

type of analyses can help identify the underlying biological mechanisms and increase 

the statistical power by reducing the dimensionality of the problem.  

 

The general framework and methodology of GSEA approaches have been thoroughly 

analyzed and discussed2,3. These methods can be classified as either self-contained or 

competitive based on the definition of the null hypothesis. A self-contained test 

compares a gene set to a fixed standard and is not dependent on genes outside of the 

set. These methods make use of the raw expression data, some of them are based on 

logistic regression models while others utilize Hotelling’s T2-tests or the more general 

MANOVA (multivariate analysis of variance) models4,5. By contrast, a competitive 

test compares the differential expression of a gene set to that of its complement. The 

majority of these methods examines whether regulated genes are overrepresented in a 

given gene set by a test of independence in a two by two contingency table, where the 

test statistic can be constructed based on χ2, hypergeometric, or binomial 

distribution6. A strict fold-change or P value cut-off is needed to obtain the regulated 

gene list, however the choice of the cut-off is often arbitrary and can have significant 

influence on the test outcome and, subsequently, the interpretation of an 

experiment7,8. Alternatively, methods that utilize the whole vector of P values or fold-

changes have been developed9,10. For example, PAGE (Parametric Analysis of Gene-
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set Enrichment) implements a computationally efficient solution based on the Central 

Limit Theorem to define an enrichment probability10. 
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Implementation 

We have implemented a new GSEA method, FDR-FET, which was first described by 

Ji et al.11 in their transcriptional profiling study of compound dose responses. The 

current implementation extends the original method and provides options to choose 

the reference set (i.e. “gene universe”).  

 

FDR-FET automatically optimizes the cut-off criterion for a gene list (L) under 

investigation using a False Discovery Rate (FDR) procedure that employs a series of 

linearly increasing critical values12 and has been shown to control the FDR at pre-

specified levels for independent test statistics13. Rather than employing a single FDR 

criterion that would represent an arbitrary limitation of the analysis, we calculate a 

series of regulated gene lists (li , where li ⊂ L, 1<= i <= 35) corresponding to FDR cut-

off values from 1% to 35% (default; or per user specified) in 1% increments.  

 

We denote the gene set collection as S. The overlap between li and a gene set s of 

interest (s ⊂ S) is examined using a Fisher’s exact test (FET). We utilize the right test 

that evaluates the significance of positive association between two lists, i.e. an 

enrichment of elements of list A (e.g. li) in list B (e.g. s) or vice versa14. For each s, 

there are as many as 35 FETs to be performed by default and the most significant P 

value is retained. This procedure is repeated for each gene set s in S. 

 

We have implemented FDR-FET as a Perl module (Bio::FdrFet) with C inline codes. 

The module expects: A) gene sets S consisting of gene IDs and associated classifiers; 

and B) gene list L consisting of unique gene IDs and associated P values from a study 

of interest. We also provide an executable program that uses this module and reads 
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two input files containing these datasets. The Perl module will evaluate each gene set 

s and output detailed analysis information such as best P value, odds ratio and the 

corresponding FDR cut-off, numbers in the contingency table, and genes in the 

overlap (between s and the li with the best P value), etc. The C inline code of the Perl 

module is a slightly modified implementation of the FET code found in R15 that is 

based on an elegant computation of binomial coefficients16. The test data in the 

module contains the GO pathways and gene P values used in the example in the next 

section. 

 

Additional options were provided to deal more rigorously with the choice of reference 

set that has a major influence on the P value. We allow four options for the reference 

set: 1) genes in L (‘Genes’); 2) union of genes in L and S (‘Union’); 3) intersection of 

genes in L and S (‘Intersection’); 4) user specified arbitrary number (‘User’). In 

particular, choice 3) excludes genes with unknown classification from being counted 

as negative matches, which may be an issue with P value calculations. Details of how 

to use the Perl module can be found by searching for ‘Bio::FdrFet’ in the CPAN 

Search website (http://search.cpan.org/).  
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Results and Discussion  

Here we demonstrate the performance of FDR-FET from three perspectives. First, we 

assessed the selectivity and sensitivity of the method. Second, we compared FDR-

FET to other GSEA methods. Since FDR-FET takes P values as input and does not 

differentiate the directions of gene regulation, we chose two popular implementations 

of the same category: a simple FET and PAGE. Third, we compared the results 

generated from different reference set options. 

 

In general, the sensitivity of GSEA analysis can be improved by removal of 

background noise, which can has strong impact on the FDR result, through removing 

the bottom n percentile of low intensity probes or probes flagged as “absent”, or 

similar. Consolidation of probes onto the gene level is also recommended to improve 

independence of measures, which is one assumption of FET (Goeman and Bühlmann 

2007). For example, Affymetrix probesets can be consolidated by associating each 

gene with the most significant P value among all probesets for the gene. 

Alternatively, one can utilize the updated probeset definitions, which have been 

shown to improve the precision and accuracy of microarray data analysis17,18. 

 

We utilized a microarray dataset from a published study on the cellular effects of 

three HIV protease inhibitors19. It is well known that patients taking protease inhibitor 

drugs to treat HIV-AIDS often develop a lipodystrophy-like syndrome such as 

hyperlipidermia, peripheral lipoatrophy and central fat accumulation20. Parker et al.19 

have shown that protease inhibitors could induce gene expression changes indicative 

of dysregulation of lipid metabolism, endoplasmic reticulum stress, and metabolic 
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disturbance. These results are consistent with clinical observations and provide basis 

for a molecular mechanism for the pathophysiology of protease inhibitor-induced 

lipodystrophy.  

 

The probeset level expression data was generated using the MAS 5.0 algorithm with 

quantile normalization21 and the 20% lowest expressed probesets were removed. A 

one-way ANOVA with respect to the “drug treatment” factor was performed to 

generate the sorted gene list by P values. We utilized gene sets from both Gene 

Ontology22 and KEGG 23. 

 

Validation of FDR-FET 

To demonstrate the sensitivity and selectivity of FDR-FET, we generated 1000 

randomized gene lists while retaining the same set of P values from the ANOVA. We 

ran FDR-FET on each of these gene lists using reference set option 1 (i.e. ‘Genes’) 

and maximal FDR at 35% for every gene set in KEGG. The 95th and 99th percentiles 

of the negative log of P values were calculated for every gene set, these values are 

found to center around 1.9 and 2.6, respectively (Figure 1). As expected, no gene set 

shows any large deviation from the others. By contrast, the P values generated from 

the real dataset exhibits a non-uniform distribution with only a few highly significant 

gene sets. Importantly, the top three gene sets with the largest separations from the 

99th percentiles are the targets of HIV protease inhibitors: Aminoacyl-tRNA 

biosynthesis (KEGG:hsa00970), Biosynthesis of steroids (KEGG:hsa00100), and 

Glycolysis/Gluconeogenesis (KEGG:hsa00010).  
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Comparison of FDR-FET with a simple FET test 

Many of the existing GSEA implementations are based on FET with a fixed P value 

or fold change cut-off. To compare the performance of FDR-FET, which employs a 

flexible cut-off criterion, with that of a typical GSEA analysis, we analyzed the 

regulated gene list generated with an arbitrary FDR cut-off (35%). Table 1 contains 

the ten most significant gene set hits calculated by FDR-FET using reference set 

option 1 (i.e. ‘Genes’) and maximal FDR at 35%. This list includes all the established 

major targets of the HIV protease inhibitors (lipid metabolism, amino acid 

metabolism, gluconeogenesis, and endoplasmic reticulum). By contrast, when a single 

arbitrary FDR cut-off (35%) is used, the effect on gluconeogenesis associated with the 

pathophysiology of protease inhibitors is missed. Moreover, as depicted in Figure 2, 

the P values for three representative gene sets reach the maximal significance at 

different FDR cut-offs, demonstrating that the utilization of a flexible cut-off criterion 

indeed maximizes the signal to noise ratio of a gene list for individual gene sets.   

 

Comparison of FDR-FET with PAGE 

The PAGE analysis was performed using the whole vector of P values from the 

ANOVA analysis as input. Since PAGE is based on the Central Limit Theorem that 

requires gene sets to be sufficiently large, we only examined those gene sets with 

sizes equal to or larger than ten. The negative log of P values for three gene sets 

(GO:0006418, GO:0004812, KEGG:hsa00970) are set to 20 since they all have a P 

value of zero by the PAGE analysis. Again we could identify all the major targets of 

HIV protease inhibitors in the top ten gene set hits from PAGE output 

(Supplementary1). Interestingly, the results from FDR-FET and PAGE show high 

concordance despite the fundamental difference in their underlining methodologies 
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(Figure 3). Using a gene set -logP value cut-off of 3, PAGE identified 76 significant 

affected gene sets whereas FDR-FET identified 79, among which 63 are shared 

between the two methods. In particular, the two top ten hit lists have eight gene sets in 

common.  

 

Since PAGE is a parametric test, it is generally more liable to gene outliers. In another 

word, a gene (or a few) with a sufficiently large fold change may lead to significant 

testing result for the gene set of which the gene is a member. For instance, 

GO:0008652 and GO:0000049 have highly significant P values by PAGE but only 

modest P values by FDR-FET (Figure 3). A close examination of the genes annotated 

to these two gene sets reveals that both contain a couple of genes with extremely low 

P values from the ANOVA test (Supplementary2). By contrast, genes in FET-based 

methods have equal weight and the P value reflects the gene set enrichment in the 

regulated gene list, true to the name of GSEA. There are areas where FDR-FET and 

PAGE can complement each other. For example, FDR-FET is more robust when the 

gene set size is small when PAGE can not produce a reliable P value. On the other 

hand, incomplete gene annotation may affect FET-based methods more than PAGE 

since lack of knowledge is counted as ‘true negative’ in the contingency table.  

 

Comparison of different reference set options 

When the biological experiment is performed using a focused gene array (i.e. a subset 

of genes from a genome), yet the whole genome is used as the reference set, the 

number of “true negative” is inflated, leading to unrealistic small P values in GSEA 

outputs. Therefore one must evaluate what is (close to) the true “universe” for an 

enrichment analysis. We have introduced new options to address this issue: 
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- "Genes”: all genes tested are counted in the GSEA calculation assuming that the 

gene sets are universally representing the genome universe.  

- "Intersection" can be used when the gene sets are selected to represent a restricted 

universe, e.g. signaling pathways. In this case, only genes that are present in at 

least one of the signaling pathways are counted. 

- 'Union' represents the general case by which any genes are counted once they are 

present in either the regulated gene list or the gene sets ("genome as reference 

set"). 

 

In options ‘Genes’ and "Union" annotated and unannotated genes are both counted in 

the reference set while in option ‘Intersection’, genes are only counted when they are 

annotated in at least one of the gene sets. Table 2 contains the ten most significant 

gene set hits by the option ‘Genes’ and the corresponding P values and ranks by 

options ‘Union’ and ‘Intersection’ calculated using maximal FDR at 35%. All three 

options identified the main HIV protease inhibitor targets, present in the top tens 

except for gluconeogenesis, which is ranked 12th in result generated from the ‘Union’ 

option. Using a gene set -logP value cut-off of 3, the options ‘Genes’ and 

‘Intersection’ identified similar numbers of affected gene sets, namely, 79 and 73, 

respectively, among which 71 gene sets are shared between the two hit lists. By 

contrast, the ‘Union’ option identified 96 gene sets, of which 21 is unique to this 

option and appears to be non-specific and unrelated to the drug effects upon close 

examination, suggesting a possible loss of selectivity with this option 

(Supplementary1). The effect of 'Intersection' becomes more apparent when smaller 

gene sets are used. The P values and the order of the hits are altered when considering 
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smaller reference sets (Supplementary 1 and Supplementary3). By selecting an 

appropriate reference set we can enhance the sensitivity and selectivity and reduce the 

number of spurious hits. 
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Conclusions   

In summary, the employment of FDR and multiple cut-offs provides statistical rigor 

with additional flexibility: the gene list size is dynamically adjusted so that genes that 

increase information content are retained yet the addition of noise is limited. This 

methodology can be applied to results from divergent experiments (e.g. hit lists from 

expression profiling and proteomics studies) as often found in chemogenomics and 

systems biology approaches.  
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Figure legends 

Figure 1: Performance assessment of FDR-FET using simulated datasets. 

P values are calculated for gene sets from the KEGG for each of the 1000 randomized 

gene lists using FDR-FET (with the option ‘Genes’ and maximal FDR=35%). The 

95th (red, squares) and 99th (green, triangles) percentiles of the P values are 

calculated for each of the gene sets. Gene sets are ordered by their P values calculated 

from the real dataset (blue, diamonds). The top three gene sets (highlighted in red 

circles) with the largest separations from the 99th percentiles are the targets of HIV 

protease inhibitors: Aminoacyl-tRNA biosynthesis (KEGG:hsa00970), Biosynthesis 

of steroids (KEGG:hsa00100), and Glycolysis/Gluconeogenesis (KEGG:hsa00010). 

 

Figure 2: The impact of cut-off criterion on gene set analysis result.  

The influence of the FDR cut-off on the size of regulated gene list (bars, right axis) 

and on the significance of selected gene sets (calculated with the option ‘Genes’) for 

the HIV protease inhibitor experiment: Endoplasmic reticulum (GO:0005783; red, 

circles); Lipid biosynthetic process (GO:0008610; green, triangles); and 

Glycolysis/Gluconeogenesis (KEGG:hsa00010; orange, diamonds). The highlighted 

data points indicate the maximal P values (labelled) for the respective hits in the gene 

sets. 

 

Figure 3: Comparison of the analysis result of FDR-FET to that of PAGE.  

P values are calculated for gene sets from the Gene Ontology and KEGG for the HIV 

protease inhibitor experiment using FDR-FET (with the option ‘Genes’ and maximal 
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FDR=35%) and PAGE (using the whole vector of gene P values as input). Gene sets 

of size equal to or larger than ten are included in the plot. 


