Actual source code: dtds.c

  1: #include <petsc/private/petscdsimpl.h>

  3: PetscClassId PETSCDS_CLASSID = 0;

  5: PetscFunctionList PetscDSList              = NULL;
  6: PetscBool         PetscDSRegisterAllCalled = PETSC_FALSE;

  8: /* A PetscDS (Discrete System) encodes a set of equations posed in a discrete space, which represents a set of
  9:    nonlinear continuum equations. The equations can have multiple fields, each field having a different
 10:    discretization. In addition, different pieces of the domain can have different field combinations and equations.

 12:    The DS provides the user a description of the approximation space on any given cell. It also gives pointwise
 13:    functions representing the equations.

 15:    Each field is associated with a label, marking the cells on which it is supported. Note that a field can be
 16:    supported on the closure of a cell not in the label due to overlap of the boundary of neighboring cells. The DM
 17:    then creates a DS for each set of cells with identical approximation spaces. When assembling, the user asks for
 18:    the space associated with a given cell. DMPlex uses the labels associated with each DS in the default integration loop.
 19: */

 21: /*@C
 22:   PetscDSRegister - Adds a new `PetscDS` implementation

 24:   Not Collective; No Fortran Support

 26:   Input Parameters:
 27: + sname        - The name of a new user-defined creation routine
 28: - function - The creation routine itself

 30:   Sample usage:
 31: .vb
 32:     PetscDSRegister("my_ds", MyPetscDSCreate);
 33: .ve

 35:   Then, your PetscDS type can be chosen with the procedural interface via
 36: .vb
 37:     PetscDSCreate(MPI_Comm, PetscDS *);
 38:     PetscDSSetType(PetscDS, "my_ds");
 39: .ve
 40:    or at runtime via the option
 41: .vb
 42:     -petscds_type my_ds
 43: .ve

 45:   Level: advanced

 47:   Note:
 48:   `PetscDSRegister()` may be called multiple times to add several user-defined `PetscDSs`

 50: .seealso: `PetscDSType`, `PetscDS`, `PetscDSRegisterAll()`, `PetscDSRegisterDestroy()`
 51: @*/
 52: PetscErrorCode PetscDSRegister(const char sname[], PetscErrorCode (*function)(PetscDS))
 53: {
 54:   PetscFunctionBegin;
 55:   PetscCall(PetscFunctionListAdd(&PetscDSList, sname, function));
 56:   PetscFunctionReturn(PETSC_SUCCESS);
 57: }

 59: /*@C
 60:   PetscDSSetType - Builds a particular `PetscDS`

 62:   Collective; No Fortran Support

 64:   Input Parameters:
 65: + prob - The `PetscDS` object
 66: - name - The `PetscDSType`

 68:   Options Database Key:
 69: . -petscds_type <type> - Sets the PetscDS type; use -help for a list of available types

 71:   Level: intermediate

 73: .seealso: `PetscDSType`, `PetscDS`, `PetscDSGetType()`, `PetscDSCreate()`
 74: @*/
 75: PetscErrorCode PetscDSSetType(PetscDS prob, PetscDSType name)
 76: {
 77:   PetscErrorCode (*r)(PetscDS);
 78:   PetscBool match;

 80:   PetscFunctionBegin;
 82:   PetscCall(PetscObjectTypeCompare((PetscObject)prob, name, &match));
 83:   if (match) PetscFunctionReturn(PETSC_SUCCESS);

 85:   PetscCall(PetscDSRegisterAll());
 86:   PetscCall(PetscFunctionListFind(PetscDSList, name, &r));
 87:   PetscCheck(r, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscDS type: %s", name);

 89:   PetscTryTypeMethod(prob, destroy);
 90:   prob->ops->destroy = NULL;

 92:   PetscCall((*r)(prob));
 93:   PetscCall(PetscObjectChangeTypeName((PetscObject)prob, name));
 94:   PetscFunctionReturn(PETSC_SUCCESS);
 95: }

 97: /*@C
 98:   PetscDSGetType - Gets the `PetscDSType` name (as a string) from the `PetscDS`

100:   Not Collective; No Fortran Support

102:   Input Parameter:
103: . prob  - The `PetscDS`

105:   Output Parameter:
106: . name - The `PetscDSType` name

108:   Level: intermediate

110: .seealso: `PetscDSType`, `PetscDS`, `PetscDSSetType()`, `PetscDSCreate()`
111: @*/
112: PetscErrorCode PetscDSGetType(PetscDS prob, PetscDSType *name)
113: {
114:   PetscFunctionBegin;
117:   PetscCall(PetscDSRegisterAll());
118:   *name = ((PetscObject)prob)->type_name;
119:   PetscFunctionReturn(PETSC_SUCCESS);
120: }

122: static PetscErrorCode PetscDSView_Ascii(PetscDS ds, PetscViewer viewer)
123: {
124:   PetscViewerFormat  format;
125:   const PetscScalar *constants;
126:   PetscInt           Nf, numConstants, f;

128:   PetscFunctionBegin;
129:   PetscCall(PetscDSGetNumFields(ds, &Nf));
130:   PetscCall(PetscViewerGetFormat(viewer, &format));
131:   PetscCall(PetscViewerASCIIPrintf(viewer, "Discrete System with %" PetscInt_FMT " fields\n", Nf));
132:   PetscCall(PetscViewerASCIIPushTab(viewer));
133:   PetscCall(PetscViewerASCIIPrintf(viewer, "  cell total dim %" PetscInt_FMT " total comp %" PetscInt_FMT "\n", ds->totDim, ds->totComp));
134:   if (ds->isCohesive) PetscCall(PetscViewerASCIIPrintf(viewer, "  cohesive cell\n"));
135:   for (f = 0; f < Nf; ++f) {
136:     DSBoundary      b;
137:     PetscObject     obj;
138:     PetscClassId    id;
139:     PetscQuadrature q;
140:     const char     *name;
141:     PetscInt        Nc, Nq, Nqc;

143:     PetscCall(PetscDSGetDiscretization(ds, f, &obj));
144:     PetscCall(PetscObjectGetClassId(obj, &id));
145:     PetscCall(PetscObjectGetName(obj, &name));
146:     PetscCall(PetscViewerASCIIPrintf(viewer, "Field %s", name ? name : "<unknown>"));
147:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
148:     if (id == PETSCFE_CLASSID) {
149:       PetscCall(PetscFEGetNumComponents((PetscFE)obj, &Nc));
150:       PetscCall(PetscFEGetQuadrature((PetscFE)obj, &q));
151:       PetscCall(PetscViewerASCIIPrintf(viewer, " FEM"));
152:     } else if (id == PETSCFV_CLASSID) {
153:       PetscCall(PetscFVGetNumComponents((PetscFV)obj, &Nc));
154:       PetscCall(PetscFVGetQuadrature((PetscFV)obj, &q));
155:       PetscCall(PetscViewerASCIIPrintf(viewer, " FVM"));
156:     } else SETERRQ(PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
157:     if (Nc > 1) PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " components", Nc));
158:     else PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT " component ", Nc));
159:     if (ds->implicit[f]) PetscCall(PetscViewerASCIIPrintf(viewer, " (implicit)"));
160:     else PetscCall(PetscViewerASCIIPrintf(viewer, " (explicit)"));
161:     if (q) {
162:       PetscCall(PetscQuadratureGetData(q, NULL, &Nqc, &Nq, NULL, NULL));
163:       PetscCall(PetscViewerASCIIPrintf(viewer, " (Nq %" PetscInt_FMT " Nqc %" PetscInt_FMT ")", Nq, Nqc));
164:     }
165:     PetscCall(PetscViewerASCIIPrintf(viewer, " %" PetscInt_FMT "-jet", ds->jetDegree[f]));
166:     PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
167:     PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
168:     PetscCall(PetscViewerASCIIPushTab(viewer));
169:     if (id == PETSCFE_CLASSID) PetscCall(PetscFEView((PetscFE)obj, viewer));
170:     else if (id == PETSCFV_CLASSID) PetscCall(PetscFVView((PetscFV)obj, viewer));
171:     PetscCall(PetscViewerASCIIPopTab(viewer));

173:     for (b = ds->boundary; b; b = b->next) {
174:       char    *name;
175:       PetscInt c, i;

177:       if (b->field != f) continue;
178:       PetscCall(PetscViewerASCIIPushTab(viewer));
179:       PetscCall(PetscViewerASCIIPrintf(viewer, "Boundary %s (%s) %s\n", b->name, b->lname, DMBoundaryConditionTypes[b->type]));
180:       if (!b->Nc) {
181:         PetscCall(PetscViewerASCIIPrintf(viewer, "  all components\n"));
182:       } else {
183:         PetscCall(PetscViewerASCIIPrintf(viewer, "  components: "));
184:         PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
185:         for (c = 0; c < b->Nc; ++c) {
186:           if (c > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ", "));
187:           PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT, b->comps[c]));
188:         }
189:         PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
190:         PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
191:       }
192:       PetscCall(PetscViewerASCIIPrintf(viewer, "  values: "));
193:       PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_FALSE));
194:       for (i = 0; i < b->Nv; ++i) {
195:         if (i > 0) PetscCall(PetscViewerASCIIPrintf(viewer, ", "));
196:         PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT, b->values[i]));
197:       }
198:       PetscCall(PetscViewerASCIIPrintf(viewer, "\n"));
199:       PetscCall(PetscViewerASCIIUseTabs(viewer, PETSC_TRUE));
200: #if defined(__clang__)
201:       PETSC_PRAGMA_DIAGNOSTIC_IGNORED_BEGIN("-Wformat-pedantic");
202: #elif defined(__GNUC__) || defined(__GNUG__)
203:       PETSC_PRAGMA_DIAGNOSTIC_IGNORED_BEGIN("-Wformat");
204: #endif
205:       if (b->func) {
206:         PetscCall(PetscDLAddr(b->func, &name));
207:         if (name) PetscCall(PetscViewerASCIIPrintf(viewer, "  func: %s\n", name));
208:         else PetscCall(PetscViewerASCIIPrintf(viewer, "  func: %p\n", b->func));
209:         PetscCall(PetscFree(name));
210:       }
211:       if (b->func_t) {
212:         PetscCall(PetscDLAddr(b->func_t, &name));
213:         if (name) PetscCall(PetscViewerASCIIPrintf(viewer, "  func_t: %s\n", name));
214:         else PetscCall(PetscViewerASCIIPrintf(viewer, "  func_t: %p\n", b->func_t));
215:         PetscCall(PetscFree(name));
216:       }
217:       PETSC_PRAGMA_DIAGNOSTIC_IGNORED_END();
218:       PetscCall(PetscWeakFormView(b->wf, viewer));
219:       PetscCall(PetscViewerASCIIPopTab(viewer));
220:     }
221:   }
222:   PetscCall(PetscDSGetConstants(ds, &numConstants, &constants));
223:   if (numConstants) {
224:     PetscCall(PetscViewerASCIIPrintf(viewer, "%" PetscInt_FMT " constants\n", numConstants));
225:     PetscCall(PetscViewerASCIIPushTab(viewer));
226:     for (f = 0; f < numConstants; ++f) PetscCall(PetscViewerASCIIPrintf(viewer, "%g\n", (double)PetscRealPart(constants[f])));
227:     PetscCall(PetscViewerASCIIPopTab(viewer));
228:   }
229:   PetscCall(PetscWeakFormView(ds->wf, viewer));
230:   PetscCall(PetscViewerASCIIPopTab(viewer));
231:   PetscFunctionReturn(PETSC_SUCCESS);
232: }

234: /*@C
235:    PetscDSViewFromOptions - View a `PetscDS` based on values in the options database

237:    Collective

239:    Input Parameters:
240: +  A - the `PetscDS` object
241: .  obj - Optional object that provides the options prefix used in the search
242: -  name - command line option

244:    Level: intermediate

246: .seealso: `PetscDSType`, `PetscDS`, `PetscDSView()`, `PetscObjectViewFromOptions()`, `PetscDSCreate()`
247: @*/
248: PetscErrorCode PetscDSViewFromOptions(PetscDS A, PetscObject obj, const char name[])
249: {
250:   PetscFunctionBegin;
252:   PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
253:   PetscFunctionReturn(PETSC_SUCCESS);
254: }

256: /*@C
257:   PetscDSView - Views a `PetscDS`

259:   Collective

261:   Input Parameters:
262: + prob - the `PetscDS` object to view
263: - v  - the viewer

265:   Level: developer

267: .seealso: `PetscDSType`, `PetscDS`, `PetscViewer`, `PetscDSDestroy()`, `PetscDSViewFromOptions()`
268: @*/
269: PetscErrorCode PetscDSView(PetscDS prob, PetscViewer v)
270: {
271:   PetscBool iascii;

273:   PetscFunctionBegin;
275:   if (!v) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)prob), &v));
277:   PetscCall(PetscObjectTypeCompare((PetscObject)v, PETSCVIEWERASCII, &iascii));
278:   if (iascii) PetscCall(PetscDSView_Ascii(prob, v));
279:   PetscTryTypeMethod(prob, view, v);
280:   PetscFunctionReturn(PETSC_SUCCESS);
281: }

283: /*@
284:   PetscDSSetFromOptions - sets parameters in a `PetscDS` from the options database

286:   Collective

288:   Input Parameter:
289: . prob - the `PetscDS` object to set options for

291:   Options Database Keys:
292: + -petscds_type <type>     - Set the `PetscDS` type
293: . -petscds_view <view opt> - View the `PetscDS`
294: . -petscds_jac_pre         - Turn formation of a separate Jacobian preconditioner on or off
295: . -bc_<name> <ids>         - Specify a list of label ids for a boundary condition
296: - -bc_<name>_comp <comps>  - Specify a list of field components to constrain for a boundary condition

298:   Level: intermediate

300: .seealso: `PetscDS`, `PetscDSView()`
301: @*/
302: PetscErrorCode PetscDSSetFromOptions(PetscDS prob)
303: {
304:   DSBoundary  b;
305:   const char *defaultType;
306:   char        name[256];
307:   PetscBool   flg;

309:   PetscFunctionBegin;
311:   if (!((PetscObject)prob)->type_name) {
312:     defaultType = PETSCDSBASIC;
313:   } else {
314:     defaultType = ((PetscObject)prob)->type_name;
315:   }
316:   PetscCall(PetscDSRegisterAll());

318:   PetscObjectOptionsBegin((PetscObject)prob);
319:   for (b = prob->boundary; b; b = b->next) {
320:     char      optname[1024];
321:     PetscInt  ids[1024], len = 1024;
322:     PetscBool flg;

324:     PetscCall(PetscSNPrintf(optname, sizeof(optname), "-bc_%s", b->name));
325:     PetscCall(PetscMemzero(ids, sizeof(ids)));
326:     PetscCall(PetscOptionsIntArray(optname, "List of boundary IDs", "", ids, &len, &flg));
327:     if (flg) {
328:       b->Nv = len;
329:       PetscCall(PetscFree(b->values));
330:       PetscCall(PetscMalloc1(len, &b->values));
331:       PetscCall(PetscArraycpy(b->values, ids, len));
332:       PetscCall(PetscWeakFormRewriteKeys(b->wf, b->label, len, b->values));
333:     }
334:     len = 1024;
335:     PetscCall(PetscSNPrintf(optname, sizeof(optname), "-bc_%s_comp", b->name));
336:     PetscCall(PetscMemzero(ids, sizeof(ids)));
337:     PetscCall(PetscOptionsIntArray(optname, "List of boundary field components", "", ids, &len, &flg));
338:     if (flg) {
339:       b->Nc = len;
340:       PetscCall(PetscFree(b->comps));
341:       PetscCall(PetscMalloc1(len, &b->comps));
342:       PetscCall(PetscArraycpy(b->comps, ids, len));
343:     }
344:   }
345:   PetscCall(PetscOptionsFList("-petscds_type", "Discrete System", "PetscDSSetType", PetscDSList, defaultType, name, 256, &flg));
346:   if (flg) {
347:     PetscCall(PetscDSSetType(prob, name));
348:   } else if (!((PetscObject)prob)->type_name) {
349:     PetscCall(PetscDSSetType(prob, defaultType));
350:   }
351:   PetscCall(PetscOptionsBool("-petscds_jac_pre", "Discrete System", "PetscDSUseJacobianPreconditioner", prob->useJacPre, &prob->useJacPre, &flg));
352:   PetscCall(PetscOptionsBool("-petscds_force_quad", "Discrete System", "PetscDSSetForceQuad", prob->forceQuad, &prob->forceQuad, &flg));
353:   PetscTryTypeMethod(prob, setfromoptions);
354:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
355:   PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)prob, PetscOptionsObject));
356:   PetscOptionsEnd();
357:   if (prob->Nf) PetscCall(PetscDSViewFromOptions(prob, NULL, "-petscds_view"));
358:   PetscFunctionReturn(PETSC_SUCCESS);
359: }

361: /*@C
362:   PetscDSSetUp - Construct data structures for the `PetscDS`

364:   Collective

366:   Input Parameter:
367: . prob - the `PetscDS` object to setup

369:   Level: developer

371: .seealso: `PetscDS`, `PetscDSView()`, `PetscDSDestroy()`
372: @*/
373: PetscErrorCode PetscDSSetUp(PetscDS prob)
374: {
375:   const PetscInt Nf          = prob->Nf;
376:   PetscBool      hasH        = PETSC_FALSE;
377:   PetscInt       maxOrder[4] = {-1, -1, -1, -1};
378:   PetscInt       dim, dimEmbed, NbMax = 0, NcMax = 0, NqMax = 0, NsMax = 1, f;

380:   PetscFunctionBegin;
382:   if (prob->setup) PetscFunctionReturn(PETSC_SUCCESS);
383:   /* Calculate sizes */
384:   PetscCall(PetscDSGetSpatialDimension(prob, &dim));
385:   PetscCall(PetscDSGetCoordinateDimension(prob, &dimEmbed));
386:   prob->totDim = prob->totComp = 0;
387:   PetscCall(PetscMalloc2(Nf, &prob->Nc, Nf, &prob->Nb));
388:   PetscCall(PetscCalloc2(Nf + 1, &prob->off, Nf + 1, &prob->offDer));
389:   PetscCall(PetscCalloc6(Nf + 1, &prob->offCohesive[0], Nf + 1, &prob->offCohesive[1], Nf + 1, &prob->offCohesive[2], Nf + 1, &prob->offDerCohesive[0], Nf + 1, &prob->offDerCohesive[1], Nf + 1, &prob->offDerCohesive[2]));
390:   PetscCall(PetscMalloc2(Nf, &prob->T, Nf, &prob->Tf));
391:   if (prob->forceQuad) {
392:     // Note: This assumes we have one kind of cell at each dimension.
393:     //       We can fix this by having quadrature hold the celltype
394:     PetscQuadrature maxQuad[4] = {NULL, NULL, NULL, NULL};

396:     for (f = 0; f < Nf; ++f) {
397:       PetscObject     obj;
398:       PetscClassId    id;
399:       PetscQuadrature q = NULL, fq = NULL;
400:       PetscInt        dim = -1, order = -1, forder = -1;

402:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
403:       if (!obj) continue;
404:       PetscCall(PetscObjectGetClassId(obj, &id));
405:       if (id == PETSCFE_CLASSID) {
406:         PetscFE fe = (PetscFE)obj;

408:         PetscCall(PetscFEGetQuadrature(fe, &q));
409:         PetscCall(PetscFEGetFaceQuadrature(fe, &fq));
410:       } else if (id == PETSCFV_CLASSID) {
411:         PetscFV fv = (PetscFV)obj;

413:         PetscCall(PetscFVGetQuadrature(fv, &q));
414:       }
415:       if (q) {
416:         PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
417:         PetscCall(PetscQuadratureGetOrder(q, &order));
418:         if (order > maxOrder[dim]) {
419:           maxOrder[dim] = order;
420:           maxQuad[dim]  = q;
421:         }
422:       }
423:       if (fq) {
424:         PetscCall(PetscQuadratureGetData(fq, &dim, NULL, NULL, NULL, NULL));
425:         PetscCall(PetscQuadratureGetOrder(fq, &forder));
426:         if (forder > maxOrder[dim]) {
427:           maxOrder[dim] = forder;
428:           maxQuad[dim]  = fq;
429:         }
430:       }
431:     }
432:     for (f = 0; f < Nf; ++f) {
433:       PetscObject     obj;
434:       PetscClassId    id;
435:       PetscQuadrature q;
436:       PetscInt        dim;

438:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
439:       if (!obj) continue;
440:       PetscCall(PetscObjectGetClassId(obj, &id));
441:       if (id == PETSCFE_CLASSID) {
442:         PetscFE fe = (PetscFE)obj;

444:         PetscCall(PetscFEGetQuadrature(fe, &q));
445:         PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
446:         PetscCall(PetscFESetQuadrature(fe, maxQuad[dim]));
447:         PetscCall(PetscFESetFaceQuadrature(fe, maxQuad[dim - 1]));
448:       } else if (id == PETSCFV_CLASSID) {
449:         PetscFV fv = (PetscFV)obj;

451:         PetscCall(PetscFVGetQuadrature(fv, &q));
452:         PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
453:         PetscCall(PetscFVSetQuadrature(fv, maxQuad[dim]));
454:       }
455:     }
456:   }
457:   for (f = 0; f < Nf; ++f) {
458:     PetscObject     obj;
459:     PetscClassId    id;
460:     PetscQuadrature q  = NULL;
461:     PetscInt        Nq = 0, Nb, Nc;

463:     PetscCall(PetscDSGetDiscretization(prob, f, &obj));
464:     if (prob->jetDegree[f] > 1) hasH = PETSC_TRUE;
465:     if (!obj) {
466:       /* Empty mesh */
467:       Nb = Nc    = 0;
468:       prob->T[f] = prob->Tf[f] = NULL;
469:     } else {
470:       PetscCall(PetscObjectGetClassId(obj, &id));
471:       if (id == PETSCFE_CLASSID) {
472:         PetscFE fe = (PetscFE)obj;

474:         PetscCall(PetscFEGetQuadrature(fe, &q));
475:         {
476:           PetscQuadrature fq;
477:           PetscInt        dim, order;

479:           PetscCall(PetscQuadratureGetData(q, &dim, NULL, NULL, NULL, NULL));
480:           PetscCall(PetscQuadratureGetOrder(q, &order));
481:           if (maxOrder[dim] < 0) maxOrder[dim] = order;
482:           PetscCheck(order == maxOrder[dim], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " cell quadrature order %" PetscInt_FMT " != %" PetscInt_FMT " DS cell quadrature order", f, order, maxOrder[dim]);
483:           PetscCall(PetscFEGetFaceQuadrature(fe, &fq));
484:           if (fq) {
485:             PetscCall(PetscQuadratureGetData(fq, &dim, NULL, NULL, NULL, NULL));
486:             PetscCall(PetscQuadratureGetOrder(fq, &order));
487:             if (maxOrder[dim] < 0) maxOrder[dim] = order;
488:             PetscCheck(order == maxOrder[dim], PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Field %" PetscInt_FMT " face quadrature order %" PetscInt_FMT " != %" PetscInt_FMT " DS face quadrature order", f, order, maxOrder[dim]);
489:           }
490:         }
491:         PetscCall(PetscFEGetDimension(fe, &Nb));
492:         PetscCall(PetscFEGetNumComponents(fe, &Nc));
493:         PetscCall(PetscFEGetCellTabulation(fe, prob->jetDegree[f], &prob->T[f]));
494:         PetscCall(PetscFEGetFaceTabulation(fe, prob->jetDegree[f], &prob->Tf[f]));
495:       } else if (id == PETSCFV_CLASSID) {
496:         PetscFV fv = (PetscFV)obj;

498:         PetscCall(PetscFVGetQuadrature(fv, &q));
499:         PetscCall(PetscFVGetNumComponents(fv, &Nc));
500:         Nb = Nc;
501:         PetscCall(PetscFVGetCellTabulation(fv, &prob->T[f]));
502:         /* TODO: should PetscFV also have face tabulation? Otherwise there will be a null pointer in prob->basisFace */
503:       } else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %" PetscInt_FMT, f);
504:     }
505:     prob->Nc[f]                    = Nc;
506:     prob->Nb[f]                    = Nb;
507:     prob->off[f + 1]               = Nc + prob->off[f];
508:     prob->offDer[f + 1]            = Nc * dim + prob->offDer[f];
509:     prob->offCohesive[0][f + 1]    = (prob->cohesive[f] ? Nc : Nc * 2) + prob->offCohesive[0][f];
510:     prob->offDerCohesive[0][f + 1] = (prob->cohesive[f] ? Nc : Nc * 2) * dimEmbed + prob->offDerCohesive[0][f];
511:     prob->offCohesive[1][f]        = (prob->cohesive[f] ? 0 : Nc) + prob->offCohesive[0][f];
512:     prob->offDerCohesive[1][f]     = (prob->cohesive[f] ? 0 : Nc) * dimEmbed + prob->offDerCohesive[0][f];
513:     prob->offCohesive[2][f + 1]    = (prob->cohesive[f] ? Nc : Nc * 2) + prob->offCohesive[2][f];
514:     prob->offDerCohesive[2][f + 1] = (prob->cohesive[f] ? Nc : Nc * 2) * dimEmbed + prob->offDerCohesive[2][f];
515:     if (q) PetscCall(PetscQuadratureGetData(q, NULL, NULL, &Nq, NULL, NULL));
516:     NqMax = PetscMax(NqMax, Nq);
517:     NbMax = PetscMax(NbMax, Nb);
518:     NcMax = PetscMax(NcMax, Nc);
519:     prob->totDim += Nb;
520:     prob->totComp += Nc;
521:     /* There are two faces for all fields on a cohesive cell, except for cohesive fields */
522:     if (prob->isCohesive && !prob->cohesive[f]) prob->totDim += Nb;
523:   }
524:   prob->offCohesive[1][Nf]    = prob->offCohesive[0][Nf];
525:   prob->offDerCohesive[1][Nf] = prob->offDerCohesive[0][Nf];
526:   /* Allocate works space */
527:   NsMax = 2; /* A non-cohesive discretizations can be used on a cohesive cell, so we need this extra workspace for all DS */
528:   PetscCall(PetscMalloc3(NsMax * prob->totComp, &prob->u, NsMax * prob->totComp, &prob->u_t, NsMax * prob->totComp * dimEmbed + (hasH ? NsMax * prob->totComp * dimEmbed * dimEmbed : 0), &prob->u_x));
529:   PetscCall(PetscMalloc5(dimEmbed, &prob->x, NbMax * NcMax, &prob->basisReal, NbMax * NcMax * dimEmbed, &prob->basisDerReal, NbMax * NcMax, &prob->testReal, NbMax * NcMax * dimEmbed, &prob->testDerReal));
530:   PetscCall(PetscMalloc6(NsMax * NqMax * NcMax, &prob->f0, NsMax * NqMax * NcMax * dimEmbed, &prob->f1, NsMax * NsMax * NqMax * NcMax * NcMax, &prob->g0, NsMax * NsMax * NqMax * NcMax * NcMax * dimEmbed, &prob->g1, NsMax * NsMax * NqMax * NcMax * NcMax * dimEmbed,
531:                          &prob->g2, NsMax * NsMax * NqMax * NcMax * NcMax * dimEmbed * dimEmbed, &prob->g3));
532:   PetscTryTypeMethod(prob, setup);
533:   prob->setup = PETSC_TRUE;
534:   PetscFunctionReturn(PETSC_SUCCESS);
535: }

537: static PetscErrorCode PetscDSDestroyStructs_Static(PetscDS prob)
538: {
539:   PetscFunctionBegin;
540:   PetscCall(PetscFree2(prob->Nc, prob->Nb));
541:   PetscCall(PetscFree2(prob->off, prob->offDer));
542:   PetscCall(PetscFree6(prob->offCohesive[0], prob->offCohesive[1], prob->offCohesive[2], prob->offDerCohesive[0], prob->offDerCohesive[1], prob->offDerCohesive[2]));
543:   PetscCall(PetscFree2(prob->T, prob->Tf));
544:   PetscCall(PetscFree3(prob->u, prob->u_t, prob->u_x));
545:   PetscCall(PetscFree5(prob->x, prob->basisReal, prob->basisDerReal, prob->testReal, prob->testDerReal));
546:   PetscCall(PetscFree6(prob->f0, prob->f1, prob->g0, prob->g1, prob->g2, prob->g3));
547:   PetscFunctionReturn(PETSC_SUCCESS);
548: }

550: static PetscErrorCode PetscDSEnlarge_Static(PetscDS prob, PetscInt NfNew)
551: {
552:   PetscObject          *tmpd;
553:   PetscBool            *tmpi;
554:   PetscInt             *tmpk;
555:   PetscBool            *tmpc;
556:   PetscPointFunc       *tmpup;
557:   PetscSimplePointFunc *tmpexactSol, *tmpexactSol_t;
558:   void                **tmpexactCtx, **tmpexactCtx_t;
559:   void                **tmpctx;
560:   PetscInt              Nf = prob->Nf, f;

562:   PetscFunctionBegin;
563:   if (Nf >= NfNew) PetscFunctionReturn(PETSC_SUCCESS);
564:   prob->setup = PETSC_FALSE;
565:   PetscCall(PetscDSDestroyStructs_Static(prob));
566:   PetscCall(PetscMalloc4(NfNew, &tmpd, NfNew, &tmpi, NfNew, &tmpc, NfNew, &tmpk));
567:   for (f = 0; f < Nf; ++f) {
568:     tmpd[f] = prob->disc[f];
569:     tmpi[f] = prob->implicit[f];
570:     tmpc[f] = prob->cohesive[f];
571:     tmpk[f] = prob->jetDegree[f];
572:   }
573:   for (f = Nf; f < NfNew; ++f) {
574:     tmpd[f] = NULL;
575:     tmpi[f] = PETSC_TRUE, tmpc[f] = PETSC_FALSE;
576:     tmpk[f] = 1;
577:   }
578:   PetscCall(PetscFree4(prob->disc, prob->implicit, prob->cohesive, prob->jetDegree));
579:   PetscCall(PetscWeakFormSetNumFields(prob->wf, NfNew));
580:   prob->Nf        = NfNew;
581:   prob->disc      = tmpd;
582:   prob->implicit  = tmpi;
583:   prob->cohesive  = tmpc;
584:   prob->jetDegree = tmpk;
585:   PetscCall(PetscCalloc2(NfNew, &tmpup, NfNew, &tmpctx));
586:   for (f = 0; f < Nf; ++f) tmpup[f] = prob->update[f];
587:   for (f = 0; f < Nf; ++f) tmpctx[f] = prob->ctx[f];
588:   for (f = Nf; f < NfNew; ++f) tmpup[f] = NULL;
589:   for (f = Nf; f < NfNew; ++f) tmpctx[f] = NULL;
590:   PetscCall(PetscFree2(prob->update, prob->ctx));
591:   prob->update = tmpup;
592:   prob->ctx    = tmpctx;
593:   PetscCall(PetscCalloc4(NfNew, &tmpexactSol, NfNew, &tmpexactCtx, NfNew, &tmpexactSol_t, NfNew, &tmpexactCtx_t));
594:   for (f = 0; f < Nf; ++f) tmpexactSol[f] = prob->exactSol[f];
595:   for (f = 0; f < Nf; ++f) tmpexactCtx[f] = prob->exactCtx[f];
596:   for (f = 0; f < Nf; ++f) tmpexactSol_t[f] = prob->exactSol_t[f];
597:   for (f = 0; f < Nf; ++f) tmpexactCtx_t[f] = prob->exactCtx_t[f];
598:   for (f = Nf; f < NfNew; ++f) tmpexactSol[f] = NULL;
599:   for (f = Nf; f < NfNew; ++f) tmpexactCtx[f] = NULL;
600:   for (f = Nf; f < NfNew; ++f) tmpexactSol_t[f] = NULL;
601:   for (f = Nf; f < NfNew; ++f) tmpexactCtx_t[f] = NULL;
602:   PetscCall(PetscFree4(prob->exactSol, prob->exactCtx, prob->exactSol_t, prob->exactCtx_t));
603:   prob->exactSol   = tmpexactSol;
604:   prob->exactCtx   = tmpexactCtx;
605:   prob->exactSol_t = tmpexactSol_t;
606:   prob->exactCtx_t = tmpexactCtx_t;
607:   PetscFunctionReturn(PETSC_SUCCESS);
608: }

610: /*@
611:   PetscDSDestroy - Destroys a `PetscDS` object

613:   Collective

615:   Input Parameter:
616: . prob - the `PetscDS` object to destroy

618:   Level: developer

620: .seealso: `PetscDSView()`
621: @*/
622: PetscErrorCode PetscDSDestroy(PetscDS *ds)
623: {
624:   PetscInt f;

626:   PetscFunctionBegin;
627:   if (!*ds) PetscFunctionReturn(PETSC_SUCCESS);

630:   if (--((PetscObject)(*ds))->refct > 0) {
631:     *ds = NULL;
632:     PetscFunctionReturn(PETSC_SUCCESS);
633:   }
634:   ((PetscObject)(*ds))->refct = 0;
635:   if ((*ds)->subprobs) {
636:     PetscInt dim, d;

638:     PetscCall(PetscDSGetSpatialDimension(*ds, &dim));
639:     for (d = 0; d < dim; ++d) PetscCall(PetscDSDestroy(&(*ds)->subprobs[d]));
640:   }
641:   PetscCall(PetscFree((*ds)->subprobs));
642:   PetscCall(PetscDSDestroyStructs_Static(*ds));
643:   for (f = 0; f < (*ds)->Nf; ++f) PetscCall(PetscObjectDereference((*ds)->disc[f]));
644:   PetscCall(PetscFree4((*ds)->disc, (*ds)->implicit, (*ds)->cohesive, (*ds)->jetDegree));
645:   PetscCall(PetscWeakFormDestroy(&(*ds)->wf));
646:   PetscCall(PetscFree2((*ds)->update, (*ds)->ctx));
647:   PetscCall(PetscFree4((*ds)->exactSol, (*ds)->exactCtx, (*ds)->exactSol_t, (*ds)->exactCtx_t));
648:   PetscTryTypeMethod((*ds), destroy);
649:   PetscCall(PetscDSDestroyBoundary(*ds));
650:   PetscCall(PetscFree((*ds)->constants));
651:   for (PetscInt c = 0; c < DM_NUM_POLYTOPES; ++c) {
652:     const PetscInt Na = DMPolytopeTypeGetNumArrangments((DMPolytopeType)c);
653:     if ((*ds)->quadPerm[c])
654:       for (PetscInt o = 0; o < Na; ++o) PetscCall(ISDestroy(&(*ds)->quadPerm[c][o]));
655:     PetscCall(PetscFree((*ds)->quadPerm[c]));
656:     (*ds)->quadPerm[c] = NULL;
657:   }
658:   PetscCall(PetscHeaderDestroy(ds));
659:   PetscFunctionReturn(PETSC_SUCCESS);
660: }

662: /*@
663:   PetscDSCreate - Creates an empty `PetscDS` object. The type can then be set with `PetscDSSetType()`.

665:   Collective

667:   Input Parameter:
668: . comm - The communicator for the `PetscDS` object

670:   Output Parameter:
671: . ds   - The `PetscDS` object

673:   Level: beginner

675: .seealso: `PetscDS`, `PetscDSSetType()`, `PETSCDSBASIC`, `PetscDSType`
676: @*/
677: PetscErrorCode PetscDSCreate(MPI_Comm comm, PetscDS *ds)
678: {
679:   PetscDS p;

681:   PetscFunctionBegin;
683:   *ds = NULL;
684:   PetscCall(PetscDSInitializePackage());

686:   PetscCall(PetscHeaderCreate(p, PETSCDS_CLASSID, "PetscDS", "Discrete System", "PetscDS", comm, PetscDSDestroy, PetscDSView));

688:   p->Nf           = 0;
689:   p->setup        = PETSC_FALSE;
690:   p->numConstants = 0;
691:   p->constants    = NULL;
692:   p->dimEmbed     = -1;
693:   p->useJacPre    = PETSC_TRUE;
694:   p->forceQuad    = PETSC_TRUE;
695:   PetscCall(PetscWeakFormCreate(comm, &p->wf));
696:   PetscCall(PetscArrayzero(p->quadPerm, DM_NUM_POLYTOPES));

698:   *ds = p;
699:   PetscFunctionReturn(PETSC_SUCCESS);
700: }

702: /*@
703:   PetscDSGetNumFields - Returns the number of fields in the `PetscDS`

705:   Not Collective

707:   Input Parameter:
708: . prob - The `PetscDS` object

710:   Output Parameter:
711: . Nf - The number of fields

713:   Level: beginner

715: .seealso: `PetscDS`, `PetscDSGetSpatialDimension()`, `PetscDSCreate()`
716: @*/
717: PetscErrorCode PetscDSGetNumFields(PetscDS prob, PetscInt *Nf)
718: {
719:   PetscFunctionBegin;
722:   *Nf = prob->Nf;
723:   PetscFunctionReturn(PETSC_SUCCESS);
724: }

726: /*@
727:   PetscDSGetSpatialDimension - Returns the spatial dimension of the `PetscDS`, meaning the topological dimension of the discretizations

729:   Not Collective

731:   Input Parameter:
732: . prob - The `PetscDS` object

734:   Output Parameter:
735: . dim - The spatial dimension

737:   Level: beginner

739: .seealso: `PetscDS`, `PetscDSGetCoordinateDimension()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
740: @*/
741: PetscErrorCode PetscDSGetSpatialDimension(PetscDS prob, PetscInt *dim)
742: {
743:   PetscFunctionBegin;
746:   *dim = 0;
747:   if (prob->Nf) {
748:     PetscObject  obj;
749:     PetscClassId id;

751:     PetscCall(PetscDSGetDiscretization(prob, 0, &obj));
752:     if (obj) {
753:       PetscCall(PetscObjectGetClassId(obj, &id));
754:       if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetSpatialDimension((PetscFE)obj, dim));
755:       else if (id == PETSCFV_CLASSID) PetscCall(PetscFVGetSpatialDimension((PetscFV)obj, dim));
756:       else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", 0);
757:     }
758:   }
759:   PetscFunctionReturn(PETSC_SUCCESS);
760: }

762: /*@
763:   PetscDSGetCoordinateDimension - Returns the coordinate dimension of the `PetscDS`, meaning the dimension of the space into which the discretiaztions are embedded

765:   Not Collective

767:   Input Parameter:
768: . prob - The `PetscDS` object

770:   Output Parameter:
771: . dimEmbed - The coordinate dimension

773:   Level: beginner

775: .seealso: `PetscDS`, `PetscDSSetCoordinateDimension()`, `PetscDSGetSpatialDimension()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
776: @*/
777: PetscErrorCode PetscDSGetCoordinateDimension(PetscDS prob, PetscInt *dimEmbed)
778: {
779:   PetscFunctionBegin;
782:   PetscCheck(prob->dimEmbed >= 0, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONGSTATE, "No coordinate dimension set for this DS");
783:   *dimEmbed = prob->dimEmbed;
784:   PetscFunctionReturn(PETSC_SUCCESS);
785: }

787: /*@
788:   PetscDSSetCoordinateDimension - Set the coordinate dimension of the `PetscDS`, meaning the dimension of the space into which the discretiaztions are embedded

790:   Logically Collective

792:   Input Parameters:
793: + prob - The `PetscDS` object
794: - dimEmbed - The coordinate dimension

796:   Level: beginner

798: .seealso: `PetscDS`, `PetscDSGetCoordinateDimension()`, `PetscDSGetSpatialDimension()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
799: @*/
800: PetscErrorCode PetscDSSetCoordinateDimension(PetscDS prob, PetscInt dimEmbed)
801: {
802:   PetscFunctionBegin;
804:   PetscCheck(dimEmbed >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Coordinate dimension must be non-negative, not %" PetscInt_FMT, dimEmbed);
805:   prob->dimEmbed = dimEmbed;
806:   PetscFunctionReturn(PETSC_SUCCESS);
807: }

809: /*@
810:   PetscDSGetForceQuad - Returns the flag to force matching quadratures among the field discretizations

812:   Not collective

814:   Input Parameter:
815: . prob - The `PetscDS` object

817:   Output Parameter:
818: . forceQuad - The flag

820:   Level: intermediate

822: .seealso: `PetscDS`, `PetscDSSetForceQuad()`, `PetscDSGetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
823: @*/
824: PetscErrorCode PetscDSGetForceQuad(PetscDS ds, PetscBool *forceQuad)
825: {
826:   PetscFunctionBegin;
829:   *forceQuad = ds->forceQuad;
830:   PetscFunctionReturn(PETSC_SUCCESS);
831: }

833: /*@
834:   PetscDSSetForceQuad - Set the flag to force matching quadratures among the field discretizations

836:   Logically collective on ds

838:   Input Parameters:
839: + ds - The `PetscDS` object
840: - forceQuad - The flag

842:   Level: intermediate

844: .seealso: `PetscDS`, `PetscDSGetForceQuad()`, `PetscDSGetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
845: @*/
846: PetscErrorCode PetscDSSetForceQuad(PetscDS ds, PetscBool forceQuad)
847: {
848:   PetscFunctionBegin;
850:   ds->forceQuad = forceQuad;
851:   PetscFunctionReturn(PETSC_SUCCESS);
852: }

854: /*@
855:   PetscDSIsCohesive - Returns the flag indicating that this `PetscDS` is for a cohesive cell

857:   Not Collective

859:   Input Parameter:
860: . ds - The `PetscDS` object

862:   Output Parameter:
863: . isCohesive - The flag

865:   Level: developer

867: .seealso: `PetscDS`, `PetscDSGetNumCohesive()`, `PetscDSGetCohesive()`, `PetscDSSetCohesive()`, `PetscDSCreate()`
868: @*/
869: PetscErrorCode PetscDSIsCohesive(PetscDS ds, PetscBool *isCohesive)
870: {
871:   PetscFunctionBegin;
874:   *isCohesive = ds->isCohesive;
875:   PetscFunctionReturn(PETSC_SUCCESS);
876: }

878: /*@
879:   PetscDSGetNumCohesive - Returns the number of cohesive fields, meaning those defined on the interior of a cohesive cell

881:   Not Collective

883:   Input Parameter:
884: . ds - The `PetscDS` object

886:   Output Parameter:
887: . numCohesive - The number of cohesive fields

889:   Level: developer

891: .seealso: `PetscDS`, `PetscDSSetCohesive()`, `PetscDSCreate()`
892: @*/
893: PetscErrorCode PetscDSGetNumCohesive(PetscDS ds, PetscInt *numCohesive)
894: {
895:   PetscInt f;

897:   PetscFunctionBegin;
900:   *numCohesive = 0;
901:   for (f = 0; f < ds->Nf; ++f) *numCohesive += ds->cohesive[f] ? 1 : 0;
902:   PetscFunctionReturn(PETSC_SUCCESS);
903: }

905: /*@
906:   PetscDSGetCohesive - Returns the flag indicating that a field is cohesive, meaning it is defined on the interior of a cohesive cell

908:   Not Collective

910:   Input Parameters:
911: + ds - The `PetscDS` object
912: - f  - The field index

914:   Output Parameter:
915: . isCohesive - The flag

917:   Level: developer

919: .seealso: `PetscDS`, `PetscDSSetCohesive()`, `PetscDSIsCohesive()`, `PetscDSCreate()`
920: @*/
921: PetscErrorCode PetscDSGetCohesive(PetscDS ds, PetscInt f, PetscBool *isCohesive)
922: {
923:   PetscFunctionBegin;
926:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
927:   *isCohesive = ds->cohesive[f];
928:   PetscFunctionReturn(PETSC_SUCCESS);
929: }

931: /*@
932:   PetscDSSetCohesive - Set the flag indicating that a field is cohesive, meaning it is defined on the interior of a cohesive cell

934:   Not Collective

936:   Input Parameters:
937: + ds - The `PetscDS` object
938: . f  - The field index
939: - isCohesive - The flag for a cohesive field

941:   Level: developer

943: .seealso: `PetscDS`, `PetscDSGetCohesive()`, `PetscDSIsCohesive()`, `PetscDSCreate()`
944: @*/
945: PetscErrorCode PetscDSSetCohesive(PetscDS ds, PetscInt f, PetscBool isCohesive)
946: {
947:   PetscInt i;

949:   PetscFunctionBegin;
951:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
952:   ds->cohesive[f] = isCohesive;
953:   ds->isCohesive  = PETSC_FALSE;
954:   for (i = 0; i < ds->Nf; ++i) ds->isCohesive = ds->isCohesive || ds->cohesive[f] ? PETSC_TRUE : PETSC_FALSE;
955:   PetscFunctionReturn(PETSC_SUCCESS);
956: }

958: /*@
959:   PetscDSGetTotalDimension - Returns the total size of the approximation space for this system

961:   Not Collective

963:   Input Parameter:
964: . prob - The `PetscDS` object

966:   Output Parameter:
967: . dim - The total problem dimension

969:   Level: beginner

971: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
972: @*/
973: PetscErrorCode PetscDSGetTotalDimension(PetscDS prob, PetscInt *dim)
974: {
975:   PetscFunctionBegin;
977:   PetscCall(PetscDSSetUp(prob));
979:   *dim = prob->totDim;
980:   PetscFunctionReturn(PETSC_SUCCESS);
981: }

983: /*@
984:   PetscDSGetTotalComponents - Returns the total number of components in this system

986:   Not Collective

988:   Input Parameter:
989: . prob - The `PetscDS` object

991:   Output Parameter:
992: . dim - The total number of components

994:   Level: beginner

996: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
997: @*/
998: PetscErrorCode PetscDSGetTotalComponents(PetscDS prob, PetscInt *Nc)
999: {
1000:   PetscFunctionBegin;
1002:   PetscCall(PetscDSSetUp(prob));
1004:   *Nc = prob->totComp;
1005:   PetscFunctionReturn(PETSC_SUCCESS);
1006: }

1008: /*@
1009:   PetscDSGetDiscretization - Returns the discretization object for the given field

1011:   Not Collective

1013:   Input Parameters:
1014: + prob - The `PetscDS` object
1015: - f - The field number

1017:   Output Parameter:
1018: . disc - The discretization object

1020:   Level: beginner

1022: .seealso: `PetscDS`, `PetscFE`, `PetscFV`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1023: @*/
1024: PetscErrorCode PetscDSGetDiscretization(PetscDS prob, PetscInt f, PetscObject *disc)
1025: {
1026:   PetscFunctionBeginHot;
1029:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
1030:   *disc = prob->disc[f];
1031:   PetscFunctionReturn(PETSC_SUCCESS);
1032: }

1034: /*@
1035:   PetscDSSetDiscretization - Sets the discretization object for the given field

1037:   Not Collective

1039:   Input Parameters:
1040: + prob - The `PetscDS` object
1041: . f - The field number
1042: - disc - The discretization object

1044:   Level: beginner

1046: .seealso: `PetscDS`, `PetscFE`, `PetscFV`, `PetscDSGetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1047: @*/
1048: PetscErrorCode PetscDSSetDiscretization(PetscDS prob, PetscInt f, PetscObject disc)
1049: {
1050:   PetscFunctionBegin;
1053:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1054:   PetscCall(PetscDSEnlarge_Static(prob, f + 1));
1055:   PetscCall(PetscObjectDereference(prob->disc[f]));
1056:   prob->disc[f] = disc;
1057:   PetscCall(PetscObjectReference(disc));
1058:   if (disc) {
1059:     PetscClassId id;

1061:     PetscCall(PetscObjectGetClassId(disc, &id));
1062:     if (id == PETSCFE_CLASSID) {
1063:       PetscCall(PetscDSSetImplicit(prob, f, PETSC_TRUE));
1064:     } else if (id == PETSCFV_CLASSID) {
1065:       PetscCall(PetscDSSetImplicit(prob, f, PETSC_FALSE));
1066:     }
1067:     PetscCall(PetscDSSetJetDegree(prob, f, 1));
1068:   }
1069:   PetscFunctionReturn(PETSC_SUCCESS);
1070: }

1072: /*@
1073:   PetscDSGetWeakForm - Returns the weak form object

1075:   Not Collective

1077:   Input Parameter:
1078: . ds - The `PetscDS` object

1080:   Output Parameter:
1081: . wf - The weak form object

1083:   Level: beginner

1085: .seealso: `PetscWeakForm`, `PetscDSSetWeakForm()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1086: @*/
1087: PetscErrorCode PetscDSGetWeakForm(PetscDS ds, PetscWeakForm *wf)
1088: {
1089:   PetscFunctionBegin;
1092:   *wf = ds->wf;
1093:   PetscFunctionReturn(PETSC_SUCCESS);
1094: }

1096: /*@
1097:   PetscDSSetWeakForm - Sets the weak form object

1099:   Not Collective

1101:   Input Parameters:
1102: + ds - The `PetscDS` object
1103: - wf - The weak form object

1105:   Level: beginner

1107: .seealso: `PetscWeakForm`, `PetscDSGetWeakForm()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1108: @*/
1109: PetscErrorCode PetscDSSetWeakForm(PetscDS ds, PetscWeakForm wf)
1110: {
1111:   PetscFunctionBegin;
1114:   PetscCall(PetscObjectDereference((PetscObject)ds->wf));
1115:   ds->wf = wf;
1116:   PetscCall(PetscObjectReference((PetscObject)wf));
1117:   PetscCall(PetscWeakFormSetNumFields(wf, ds->Nf));
1118:   PetscFunctionReturn(PETSC_SUCCESS);
1119: }

1121: /*@
1122:   PetscDSAddDiscretization - Adds a discretization object

1124:   Not Collective

1126:   Input Parameters:
1127: + prob - The `PetscDS` object
1128: - disc - The boundary discretization object

1130:   Level: beginner

1132: .seealso: `PetscWeakForm`, `PetscDSGetDiscretization()`, `PetscDSSetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1133: @*/
1134: PetscErrorCode PetscDSAddDiscretization(PetscDS prob, PetscObject disc)
1135: {
1136:   PetscFunctionBegin;
1137:   PetscCall(PetscDSSetDiscretization(prob, prob->Nf, disc));
1138:   PetscFunctionReturn(PETSC_SUCCESS);
1139: }

1141: /*@
1142:   PetscDSGetQuadrature - Returns the quadrature, which must agree for all fields in the `PetscDS`

1144:   Not Collective

1146:   Input Parameter:
1147: . prob - The `PetscDS` object

1149:   Output Parameter:
1150: . q - The quadrature object

1152:   Level: intermediate

1154: .seealso: `PetscDS`, `PetscQuadrature`, `PetscDSSetImplicit()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1155: @*/
1156: PetscErrorCode PetscDSGetQuadrature(PetscDS prob, PetscQuadrature *q)
1157: {
1158:   PetscObject  obj;
1159:   PetscClassId id;

1161:   PetscFunctionBegin;
1162:   *q = NULL;
1163:   if (!prob->Nf) PetscFunctionReturn(PETSC_SUCCESS);
1164:   PetscCall(PetscDSGetDiscretization(prob, 0, &obj));
1165:   PetscCall(PetscObjectGetClassId(obj, &id));
1166:   if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetQuadrature((PetscFE)obj, q));
1167:   else if (id == PETSCFV_CLASSID) PetscCall(PetscFVGetQuadrature((PetscFV)obj, q));
1168:   else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unknown discretization type for field %d", 0);
1169:   PetscFunctionReturn(PETSC_SUCCESS);
1170: }

1172: /*@
1173:   PetscDSGetImplicit - Returns the flag for implicit solve for this field. This is just a guide for `TSIMEX`

1175:   Not Collective

1177:   Input Parameters:
1178: + prob - The `PetscDS` object
1179: - f - The field number

1181:   Output Parameter:
1182: . implicit - The flag indicating what kind of solve to use for this field

1184:   Level: developer

1186: .seealso: `TSIMEX`, `PetscDS`, `PetscDSSetImplicit()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1187: @*/
1188: PetscErrorCode PetscDSGetImplicit(PetscDS prob, PetscInt f, PetscBool *implicit)
1189: {
1190:   PetscFunctionBegin;
1193:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
1194:   *implicit = prob->implicit[f];
1195:   PetscFunctionReturn(PETSC_SUCCESS);
1196: }

1198: /*@
1199:   PetscDSSetImplicit - Set the flag for implicit solve for this field. This is just a guide for `TSIMEX`

1201:   Not Collective

1203:   Input Parameters:
1204: + prob - The `PetscDS` object
1205: . f - The field number
1206: - implicit - The flag indicating what kind of solve to use for this field

1208:   Level: developer

1210: .seealso: `TSIMEX`, `PetscDSGetImplicit()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1211: @*/
1212: PetscErrorCode PetscDSSetImplicit(PetscDS prob, PetscInt f, PetscBool implicit)
1213: {
1214:   PetscFunctionBegin;
1216:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
1217:   prob->implicit[f] = implicit;
1218:   PetscFunctionReturn(PETSC_SUCCESS);
1219: }

1221: /*@
1222:   PetscDSGetJetDegree - Returns the highest derivative for this field equation, or the k-jet that the discretization needs to tabulate.

1224:   Not Collective

1226:   Input Parameters:
1227: + ds - The `PetscDS` object
1228: - f  - The field number

1230:   Output Parameter:
1231: . k  - The highest derivative we need to tabulate

1233:   Level: developer

1235: .seealso: `PetscDS`, `PetscDSSetJetDegree()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1236: @*/
1237: PetscErrorCode PetscDSGetJetDegree(PetscDS ds, PetscInt f, PetscInt *k)
1238: {
1239:   PetscFunctionBegin;
1242:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1243:   *k = ds->jetDegree[f];
1244:   PetscFunctionReturn(PETSC_SUCCESS);
1245: }

1247: /*@
1248:   PetscDSSetJetDegree - Set the highest derivative for this field equation, or the k-jet that the discretization needs to tabulate.

1250:   Not Collective

1252:   Input Parameters:
1253: + ds - The `PetscDS` object
1254: . f  - The field number
1255: - k  - The highest derivative we need to tabulate

1257:   Level: developer

1259: .seealso: ``PetscDS`, PetscDSGetJetDegree()`, `PetscDSSetDiscretization()`, `PetscDSAddDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
1260: @*/
1261: PetscErrorCode PetscDSSetJetDegree(PetscDS ds, PetscInt f, PetscInt k)
1262: {
1263:   PetscFunctionBegin;
1265:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1266:   ds->jetDegree[f] = k;
1267:   PetscFunctionReturn(PETSC_SUCCESS);
1268: }

1270: /*@C
1271:   PetscDSGetObjective - Get the pointwise objective function for a given test field

1273:   Not Collective

1275:   Input Parameters:
1276: + ds - The `PetscDS`
1277: - f  - The test field number

1279:   Output Parameters:
1280: . obj - integrand for the test function term

1282:   Calling sequence of `obj`:
1283: .vb
1284:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1285:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1286:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1287:           PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar obj[])
1288: .ve
1289: + dim - the spatial dimension
1290: . Nf - the number of fields
1291: . uOff - the offset into u[] and u_t[] for each field
1292: . uOff_x - the offset into u_x[] for each field
1293: . u - each field evaluated at the current point
1294: . u_t - the time derivative of each field evaluated at the current point
1295: . u_x - the gradient of each field evaluated at the current point
1296: . aOff - the offset into a[] and a_t[] for each auxiliary field
1297: . aOff_x - the offset into a_x[] for each auxiliary field
1298: . a - each auxiliary field evaluated at the current point
1299: . a_t - the time derivative of each auxiliary field evaluated at the current point
1300: . a_x - the gradient of auxiliary each field evaluated at the current point
1301: . t - current time
1302: . x - coordinates of the current point
1303: . numConstants - number of constant parameters
1304: . constants - constant parameters
1305: - obj - output values at the current point

1307:   Level: intermediate

1309:   Note:
1310:   We are using a first order FEM model for the weak form:  \int_\Omega \phi obj(u, u_t, \nabla u, x, t)

1312: .seealso: `PetscDS`, `PetscDSSetObjective()`, `PetscDSGetResidual()`
1313: @*/
1314: PetscErrorCode PetscDSGetObjective(PetscDS ds, PetscInt f, void (**obj)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar obj[]))
1315: {
1316:   PetscPointFunc *tmp;
1317:   PetscInt        n;

1319:   PetscFunctionBegin;
1322:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1323:   PetscCall(PetscWeakFormGetObjective(ds->wf, NULL, 0, f, 0, &n, &tmp));
1324:   *obj = tmp ? tmp[0] : NULL;
1325:   PetscFunctionReturn(PETSC_SUCCESS);
1326: }

1328: /*@C
1329:   PetscDSSetObjective - Set the pointwise objective function for a given test field

1331:   Not Collective

1333:   Input Parameters:
1334: + ds  - The `PetscDS`
1335: . f   - The test field number
1336: - obj - integrand for the test function term

1338:   Calling sequence of `obj`:
1339: .vb
1340:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1341:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1342:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1343:           PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar obj[])
1344: .ve
1345: + dim - the spatial dimension
1346: . Nf - the number of fields
1347: . uOff - the offset into u[] and u_t[] for each field
1348: . uOff_x - the offset into u_x[] for each field
1349: . u - each field evaluated at the current point
1350: . u_t - the time derivative of each field evaluated at the current point
1351: . u_x - the gradient of each field evaluated at the current point
1352: . aOff - the offset into a[] and a_t[] for each auxiliary field
1353: . aOff_x - the offset into a_x[] for each auxiliary field
1354: . a - each auxiliary field evaluated at the current point
1355: . a_t - the time derivative of each auxiliary field evaluated at the current point
1356: . a_x - the gradient of auxiliary each field evaluated at the current point
1357: . t - current time
1358: . x - coordinates of the current point
1359: . numConstants - number of constant parameters
1360: . constants - constant parameters
1361: - obj - output values at the current point

1363:   Level: intermediate

1365:   Note:
1366:   We are using a first order FEM model for the weak form:  \int_\Omega \phi obj(u, u_t, \nabla u, x, t)

1368: .seealso: `PetscDS`, `PetscDSGetObjective()`, `PetscDSSetResidual()`
1369: @*/
1370: PetscErrorCode PetscDSSetObjective(PetscDS ds, PetscInt f, void (*obj)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar obj[]))
1371: {
1372:   PetscFunctionBegin;
1375:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1376:   PetscCall(PetscWeakFormSetIndexObjective(ds->wf, NULL, 0, f, 0, 0, obj));
1377:   PetscFunctionReturn(PETSC_SUCCESS);
1378: }

1380: /*@C
1381:   PetscDSGetResidual - Get the pointwise residual function for a given test field

1383:   Not Collective

1385:   Input Parameters:
1386: + ds - The `PetscDS`
1387: - f  - The test field number

1389:   Output Parameters:
1390: + f0 - integrand for the test function term
1391: - f1 - integrand for the test function gradient term

1393:   Calling sequence of `f0` and `f1`:
1394: .vb
1395:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1396:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1397:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1398:           PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
1399: .ve
1400: + dim - the spatial dimension
1401: . Nf - the number of fields
1402: . uOff - the offset into u[] and u_t[] for each field
1403: . uOff_x - the offset into u_x[] for each field
1404: . u - each field evaluated at the current point
1405: . u_t - the time derivative of each field evaluated at the current point
1406: . u_x - the gradient of each field evaluated at the current point
1407: . aOff - the offset into a[] and a_t[] for each auxiliary field
1408: . aOff_x - the offset into a_x[] for each auxiliary field
1409: . a - each auxiliary field evaluated at the current point
1410: . a_t - the time derivative of each auxiliary field evaluated at the current point
1411: . a_x - the gradient of auxiliary each field evaluated at the current point
1412: . t - current time
1413: . x - coordinates of the current point
1414: . numConstants - number of constant parameters
1415: . constants - constant parameters
1416: - f0 - output values at the current point

1418:   Level: intermediate

1420:   Note:
1421:   We are using a first order FEM model for the weak form:  \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)

1423: .seealso: `PetscDS`, `PetscDSSetResidual()`
1424: @*/
1425: PetscErrorCode PetscDSGetResidual(PetscDS ds, PetscInt f, void (**f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (**f1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]))
1426: {
1427:   PetscPointFunc *tmp0, *tmp1;
1428:   PetscInt        n0, n1;

1430:   PetscFunctionBegin;
1432:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1433:   PetscCall(PetscWeakFormGetResidual(ds->wf, NULL, 0, f, 0, &n0, &tmp0, &n1, &tmp1));
1434:   *f0 = tmp0 ? tmp0[0] : NULL;
1435:   *f1 = tmp1 ? tmp1[0] : NULL;
1436:   PetscFunctionReturn(PETSC_SUCCESS);
1437: }

1439: /*@C
1440:   PetscDSSetResidual - Set the pointwise residual function for a given test field

1442:   Not Collective

1444:   Input Parameters:
1445: + ds - The `PetscDS`
1446: . f  - The test field number
1447: . f0 - integrand for the test function term
1448: - f1 - integrand for the test function gradient term

1450:   Calling sequence of `f0` and `f1`:
1451: .vb
1452:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1453:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1454:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1455:           PetscReal t, const PetscReal x[], PetscScalar f0[])
1456: .ve
1457: + dim - the spatial dimension
1458: . Nf - the number of fields
1459: . uOff - the offset into u[] and u_t[] for each field
1460: . uOff_x - the offset into u_x[] for each field
1461: . u - each field evaluated at the current point
1462: . u_t - the time derivative of each field evaluated at the current point
1463: . u_x - the gradient of each field evaluated at the current point
1464: . aOff - the offset into a[] and a_t[] for each auxiliary field
1465: . aOff_x - the offset into a_x[] for each auxiliary field
1466: . a - each auxiliary field evaluated at the current point
1467: . a_t - the time derivative of each auxiliary field evaluated at the current point
1468: . a_x - the gradient of auxiliary each field evaluated at the current point
1469: . t - current time
1470: . x - coordinates of the current point
1471: . numConstants - number of constant parameters
1472: . constants - constant parameters
1473: - f0 - output values at the current point

1475:   Level: intermediate

1477:   Note:
1478:   We are using a first order FEM model for the weak form:  \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)

1480: .seealso: `PetscDS`, `PetscDSGetResidual()`
1481: @*/
1482: PetscErrorCode PetscDSSetResidual(PetscDS ds, PetscInt f, void (*f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (*f1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]))
1483: {
1484:   PetscFunctionBegin;
1488:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1489:   PetscCall(PetscWeakFormSetIndexResidual(ds->wf, NULL, 0, f, 0, 0, f0, 0, f1));
1490:   PetscFunctionReturn(PETSC_SUCCESS);
1491: }

1493: /*@C
1494:   PetscDSGetRHSResidual - Get the pointwise RHS residual function for explicit timestepping for a given test field

1496:   Not Collective

1498:   Input Parameters:
1499: + ds - The `PetscDS`
1500: - f  - The test field number

1502:   Output Parameters:
1503: + f0 - integrand for the test function term
1504: - f1 - integrand for the test function gradient term

1506:   Calling sequence of `f0` and `f1`:
1507: .vb
1508:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1509:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1510:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1511:           PetscReal t, const PetscReal x[], PetscScalar f0[])
1512: .ve
1513: + dim - the spatial dimension
1514: . Nf - the number of fields
1515: . uOff - the offset into u[] and u_t[] for each field
1516: . uOff_x - the offset into u_x[] for each field
1517: . u - each field evaluated at the current point
1518: . u_t - the time derivative of each field evaluated at the current point
1519: . u_x - the gradient of each field evaluated at the current point
1520: . aOff - the offset into a[] and a_t[] for each auxiliary field
1521: . aOff_x - the offset into a_x[] for each auxiliary field
1522: . a - each auxiliary field evaluated at the current point
1523: . a_t - the time derivative of each auxiliary field evaluated at the current point
1524: . a_x - the gradient of auxiliary each field evaluated at the current point
1525: . t - current time
1526: . x - coordinates of the current point
1527: . numConstants - number of constant parameters
1528: . constants - constant parameters
1529: - f0 - output values at the current point

1531:   Level: intermediate

1533:   Note:
1534:   We are using a first order FEM model for the weak form: \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)

1536: .seealso: `PetscDS`, `PetscDSSetRHSResidual()`
1537: @*/
1538: PetscErrorCode PetscDSGetRHSResidual(PetscDS ds, PetscInt f, void (**f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (**f1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]))
1539: {
1540:   PetscPointFunc *tmp0, *tmp1;
1541:   PetscInt        n0, n1;

1543:   PetscFunctionBegin;
1545:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1546:   PetscCall(PetscWeakFormGetResidual(ds->wf, NULL, 0, f, 100, &n0, &tmp0, &n1, &tmp1));
1547:   *f0 = tmp0 ? tmp0[0] : NULL;
1548:   *f1 = tmp1 ? tmp1[0] : NULL;
1549:   PetscFunctionReturn(PETSC_SUCCESS);
1550: }

1552: /*@C
1553:   PetscDSSetRHSResidual - Set the pointwise residual function for explicit timestepping for a given test field

1555:   Not Collective

1557:   Input Parameters:
1558: + ds - The `PetscDS`
1559: . f  - The test field number
1560: . f0 - integrand for the test function term
1561: - f1 - integrand for the test function gradient term

1563:   Clling sequence for the callbacks f0 and f1:
1564: .vb
1565:   f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1566:      const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1567:      const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1568:      PetscReal t, const PetscReal x[], PetscScalar f0[])
1569: .ve
1570: + dim - the spatial dimension
1571: . Nf - the number of fields
1572: . uOff - the offset into u[] and u_t[] for each field
1573: . uOff_x - the offset into u_x[] for each field
1574: . u - each field evaluated at the current point
1575: . u_t - the time derivative of each field evaluated at the current point
1576: . u_x - the gradient of each field evaluated at the current point
1577: . aOff - the offset into a[] and a_t[] for each auxiliary field
1578: . aOff_x - the offset into a_x[] for each auxiliary field
1579: . a - each auxiliary field evaluated at the current point
1580: . a_t - the time derivative of each auxiliary field evaluated at the current point
1581: . a_x - the gradient of auxiliary each field evaluated at the current point
1582: . t - current time
1583: . x - coordinates of the current point
1584: . numConstants - number of constant parameters
1585: . constants - constant parameters
1586: - f0 - output values at the current point

1588:   Level: intermediate

1590:   Note:
1591:   We are using a first order FEM model for the weak form:  \int_\Omega \phi f_0(u, u_t, \nabla u, x, t) + \nabla\phi \cdot {\vec f}_1(u, u_t, \nabla u, x, t)

1593: .seealso: `PetscDS`, `PetscDSGetResidual()`
1594: @*/
1595: PetscErrorCode PetscDSSetRHSResidual(PetscDS ds, PetscInt f, void (*f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (*f1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]))
1596: {
1597:   PetscFunctionBegin;
1601:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1602:   PetscCall(PetscWeakFormSetIndexResidual(ds->wf, NULL, 0, f, 100, 0, f0, 0, f1));
1603:   PetscFunctionReturn(PETSC_SUCCESS);
1604: }

1606: /*@C
1607:   PetscDSHasJacobian - Checks that the Jacobian functions have been set

1609:   Not Collective

1611:   Input Parameter:
1612: . prob - The `PetscDS`

1614:   Output Parameter:
1615: . hasJac - flag that pointwise function for the Jacobian has been set

1617:   Level: intermediate

1619: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1620: @*/
1621: PetscErrorCode PetscDSHasJacobian(PetscDS ds, PetscBool *hasJac)
1622: {
1623:   PetscFunctionBegin;
1625:   PetscCall(PetscWeakFormHasJacobian(ds->wf, hasJac));
1626:   PetscFunctionReturn(PETSC_SUCCESS);
1627: }

1629: /*@C
1630:   PetscDSGetJacobian - Get the pointwise Jacobian function for given test and basis field

1632:   Not Collective

1634:   Input Parameters:
1635: + ds - The `PetscDS`
1636: . f  - The test field number
1637: - g  - The field number

1639:   Output Parameters:
1640: + g0 - integrand for the test and basis function term
1641: . g1 - integrand for the test function and basis function gradient term
1642: . g2 - integrand for the test function gradient and basis function term
1643: - g3 - integrand for the test function gradient and basis function gradient term

1645:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
1646: .vb
1647:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1648:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1649:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1650:           PetscReal t, const PetscReal u_tShift, const PetscReal x[], PetscScalar g0[])
1651: .ve
1652: + dim - the spatial dimension
1653: . Nf - the number of fields
1654: . uOff - the offset into u[] and u_t[] for each field
1655: . uOff_x - the offset into u_x[] for each field
1656: . u - each field evaluated at the current point
1657: . u_t - the time derivative of each field evaluated at the current point
1658: . u_x - the gradient of each field evaluated at the current point
1659: . aOff - the offset into a[] and a_t[] for each auxiliary field
1660: . aOff_x - the offset into a_x[] for each auxiliary field
1661: . a - each auxiliary field evaluated at the current point
1662: . a_t - the time derivative of each auxiliary field evaluated at the current point
1663: . a_x - the gradient of auxiliary each field evaluated at the current point
1664: . t - current time
1665: . u_tShift - the multiplier a for dF/dU_t
1666: . x - coordinates of the current point
1667: . numConstants - number of constant parameters
1668: . constants - constant parameters
1669: - g0 - output values at the current point

1671:   Level: intermediate

1673:   Note:
1674:   We are using a first order FEM model for the weak form:
1675:   \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi

1677: .seealso: `PetscDS`, `PetscDSSetJacobian()`
1678: @*/
1679: PetscErrorCode PetscDSGetJacobian(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (**g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (**g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
1680: {
1681:   PetscPointJac *tmp0, *tmp1, *tmp2, *tmp3;
1682:   PetscInt       n0, n1, n2, n3;

1684:   PetscFunctionBegin;
1686:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1687:   PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
1688:   PetscCall(PetscWeakFormGetJacobian(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
1689:   *g0 = tmp0 ? tmp0[0] : NULL;
1690:   *g1 = tmp1 ? tmp1[0] : NULL;
1691:   *g2 = tmp2 ? tmp2[0] : NULL;
1692:   *g3 = tmp3 ? tmp3[0] : NULL;
1693:   PetscFunctionReturn(PETSC_SUCCESS);
1694: }

1696: /*@C
1697:   PetscDSSetJacobian - Set the pointwise Jacobian function for given test and basis fields

1699:   Not Collective

1701:   Input Parameters:
1702: + ds - The `PetscDS`
1703: . f  - The test field number
1704: . g  - The field number
1705: . g0 - integrand for the test and basis function term
1706: . g1 - integrand for the test function and basis function gradient term
1707: . g2 - integrand for the test function gradient and basis function term
1708: - g3 - integrand for the test function gradient and basis function gradient term

1710:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
1711: .vb
1712:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1713:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1714:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1715:           PetscReal t, const PetscReal x[], PetscScalar g0[])
1716: .ve
1717: + dim - the spatial dimension
1718: . Nf - the number of fields
1719: . uOff - the offset into u[] and u_t[] for each field
1720: . uOff_x - the offset into u_x[] for each field
1721: . u - each field evaluated at the current point
1722: . u_t - the time derivative of each field evaluated at the current point
1723: . u_x - the gradient of each field evaluated at the current point
1724: . aOff - the offset into a[] and a_t[] for each auxiliary field
1725: . aOff_x - the offset into a_x[] for each auxiliary field
1726: . a - each auxiliary field evaluated at the current point
1727: . a_t - the time derivative of each auxiliary field evaluated at the current point
1728: . a_x - the gradient of auxiliary each field evaluated at the current point
1729: . t - current time
1730: . u_tShift - the multiplier a for dF/dU_t
1731: . x - coordinates of the current point
1732: . numConstants - number of constant parameters
1733: . constants - constant parameters
1734: - g0 - output values at the current point

1736:   Level: intermediate

1738:   Note:
1739:    We are using a first order FEM model for the weak form:
1740:   \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi

1742: .seealso: `PetscDS`, `PetscDSGetJacobian()`
1743: @*/
1744: PetscErrorCode PetscDSSetJacobian(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (*g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (*g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
1745: {
1746:   PetscFunctionBegin;
1752:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1753:   PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
1754:   PetscCall(PetscWeakFormSetIndexJacobian(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
1755:   PetscFunctionReturn(PETSC_SUCCESS);
1756: }

1758: /*@C
1759:   PetscDSUseJacobianPreconditioner - Set whether to construct a Jacobian preconditioner

1761:   Not Collective

1763:   Input Parameters:
1764: + prob - The `PetscDS`
1765: - useJacPre - flag that enables construction of a Jacobian preconditioner

1767:   Level: intermediate

1769: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1770: @*/
1771: PetscErrorCode PetscDSUseJacobianPreconditioner(PetscDS prob, PetscBool useJacPre)
1772: {
1773:   PetscFunctionBegin;
1775:   prob->useJacPre = useJacPre;
1776:   PetscFunctionReturn(PETSC_SUCCESS);
1777: }

1779: /*@C
1780:   PetscDSHasJacobianPreconditioner - Checks if a Jacobian preconditioner matrix has been set

1782:   Not Collective

1784:   Input Parameter:
1785: . prob - The `PetscDS`

1787:   Output Parameter:
1788: . hasJacPre - flag that pointwise function for Jacobian preconditioner matrix has been set

1790:   Level: intermediate

1792: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1793: @*/
1794: PetscErrorCode PetscDSHasJacobianPreconditioner(PetscDS ds, PetscBool *hasJacPre)
1795: {
1796:   PetscFunctionBegin;
1798:   *hasJacPre = PETSC_FALSE;
1799:   if (!ds->useJacPre) PetscFunctionReturn(PETSC_SUCCESS);
1800:   PetscCall(PetscWeakFormHasJacobianPreconditioner(ds->wf, hasJacPre));
1801:   PetscFunctionReturn(PETSC_SUCCESS);
1802: }

1804: /*@C
1805:   PetscDSGetJacobianPreconditioner - Get the pointwise Jacobian preconditioner function for given test and basis field. If this is missing,
1806:    the system matrix is used to build the preconditioner.

1808:   Not Collective

1810:   Input Parameters:
1811: + ds - The `PetscDS`
1812: . f  - The test field number
1813: - g  - The field number

1815:   Output Parameters:
1816: + g0 - integrand for the test and basis function term
1817: . g1 - integrand for the test function and basis function gradient term
1818: . g2 - integrand for the test function gradient and basis function term
1819: - g3 - integrand for the test function gradient and basis function gradient term

1821:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
1822: .vb
1823:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1824:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1825:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1826:           PetscReal t, const PetscReal u_tShift, const PetscReal x[], PetscScalar g0[])
1827: .ve
1828: + dim - the spatial dimension
1829: . Nf - the number of fields
1830: . uOff - the offset into u[] and u_t[] for each field
1831: . uOff_x - the offset into u_x[] for each field
1832: . u - each field evaluated at the current point
1833: . u_t - the time derivative of each field evaluated at the current point
1834: . u_x - the gradient of each field evaluated at the current point
1835: . aOff - the offset into a[] and a_t[] for each auxiliary field
1836: . aOff_x - the offset into a_x[] for each auxiliary field
1837: . a - each auxiliary field evaluated at the current point
1838: . a_t - the time derivative of each auxiliary field evaluated at the current point
1839: . a_x - the gradient of auxiliary each field evaluated at the current point
1840: . t - current time
1841: . u_tShift - the multiplier a for dF/dU_t
1842: . x - coordinates of the current point
1843: . numConstants - number of constant parameters
1844: . constants - constant parameters
1845: - g0 - output values at the current point

1847:   Level: intermediate

1849:   Note:
1850:   We are using a first order FEM model for the weak form:
1851:   \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi

1853: .seealso: `PetscDS`, `PetscDSSetJacobianPreconditioner()`, `PetscDSGetJacobian()`
1854: @*/
1855: PetscErrorCode PetscDSGetJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (**g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (**g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
1856: {
1857:   PetscPointJac *tmp0, *tmp1, *tmp2, *tmp3;
1858:   PetscInt       n0, n1, n2, n3;

1860:   PetscFunctionBegin;
1862:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
1863:   PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
1864:   PetscCall(PetscWeakFormGetJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
1865:   *g0 = tmp0 ? tmp0[0] : NULL;
1866:   *g1 = tmp1 ? tmp1[0] : NULL;
1867:   *g2 = tmp2 ? tmp2[0] : NULL;
1868:   *g3 = tmp3 ? tmp3[0] : NULL;
1869:   PetscFunctionReturn(PETSC_SUCCESS);
1870: }

1872: /*@C
1873:   PetscDSSetJacobianPreconditioner - Set the pointwise Jacobian preconditioner function for given test and basis fields.
1874:   If this is missing, the system matrix is used to build the preconditioner.

1876:   Not Collective

1878:   Input Parameters:
1879: + ds - The `PetscDS`
1880: . f  - The test field number
1881: . g  - The field number
1882: . g0 - integrand for the test and basis function term
1883: . g1 - integrand for the test function and basis function gradient term
1884: . g2 - integrand for the test function gradient and basis function term
1885: - g3 - integrand for the test function gradient and basis function gradient term

1887:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
1888: .vb
1889:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1890:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1891:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1892:           PetscReal t, const PetscReal x[], PetscScalar g0[])
1893: .ve
1894: + dim - the spatial dimension
1895: . Nf - the number of fields
1896: . uOff - the offset into u[] and u_t[] for each field
1897: . uOff_x - the offset into u_x[] for each field
1898: . u - each field evaluated at the current point
1899: . u_t - the time derivative of each field evaluated at the current point
1900: . u_x - the gradient of each field evaluated at the current point
1901: . aOff - the offset into a[] and a_t[] for each auxiliary field
1902: . aOff_x - the offset into a_x[] for each auxiliary field
1903: . a - each auxiliary field evaluated at the current point
1904: . a_t - the time derivative of each auxiliary field evaluated at the current point
1905: . a_x - the gradient of auxiliary each field evaluated at the current point
1906: . t - current time
1907: . u_tShift - the multiplier a for dF/dU_t
1908: . x - coordinates of the current point
1909: . numConstants - number of constant parameters
1910: . constants - constant parameters
1911: - g0 - output values at the current point

1913:   Level: intermediate

1915:   Note:
1916:   We are using a first order FEM model for the weak form:
1917:   \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi

1919: .seealso: `PetscDS`, `PetscDSGetJacobianPreconditioner()`, `PetscDSSetJacobian()`
1920: @*/
1921: PetscErrorCode PetscDSSetJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (*g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (*g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
1922: {
1923:   PetscFunctionBegin;
1929:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
1930:   PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
1931:   PetscCall(PetscWeakFormSetIndexJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
1932:   PetscFunctionReturn(PETSC_SUCCESS);
1933: }

1935: /*@C
1936:   PetscDSHasDynamicJacobian - Signals that a dynamic Jacobian, dF/du_t, has been set

1938:   Not Collective

1940:   Input Parameter:
1941: . ds - The `PetscDS`

1943:   Output Parameter:
1944: . hasDynJac - flag that pointwise function for dynamic Jacobian has been set

1946:   Level: intermediate

1948: .seealso: `PetscDS`, `PetscDSGetDynamicJacobian()`, `PetscDSSetDynamicJacobian()`, `PetscDSGetJacobian()`
1949: @*/
1950: PetscErrorCode PetscDSHasDynamicJacobian(PetscDS ds, PetscBool *hasDynJac)
1951: {
1952:   PetscFunctionBegin;
1954:   PetscCall(PetscWeakFormHasDynamicJacobian(ds->wf, hasDynJac));
1955:   PetscFunctionReturn(PETSC_SUCCESS);
1956: }

1958: /*@C
1959:   PetscDSGetDynamicJacobian - Get the pointwise dynamic Jacobian, dF/du_t, function for given test and basis field

1961:   Not Collective

1963:   Input Parameters:
1964: + ds - The `PetscDS`
1965: . f  - The test field number
1966: - g  - The field number

1968:   Output Parameters:
1969: + g0 - integrand for the test and basis function term
1970: . g1 - integrand for the test function and basis function gradient term
1971: . g2 - integrand for the test function gradient and basis function term
1972: - g3 - integrand for the test function gradient and basis function gradient term

1974:    Calling sequence of `g0`, `g1`, `g2` and `g3`:
1975: .vb
1976:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
1977:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
1978:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
1979:           PetscReal t, const PetscReal u_tShift, const PetscReal x[], PetscScalar g0[])
1980: .ve
1981: + dim - the spatial dimension
1982: . Nf - the number of fields
1983: . uOff - the offset into u[] and u_t[] for each field
1984: . uOff_x - the offset into u_x[] for each field
1985: . u - each field evaluated at the current point
1986: . u_t - the time derivative of each field evaluated at the current point
1987: . u_x - the gradient of each field evaluated at the current point
1988: . aOff - the offset into a[] and a_t[] for each auxiliary field
1989: . aOff_x - the offset into a_x[] for each auxiliary field
1990: . a - each auxiliary field evaluated at the current point
1991: . a_t - the time derivative of each auxiliary field evaluated at the current point
1992: . a_x - the gradient of auxiliary each field evaluated at the current point
1993: . t - current time
1994: . u_tShift - the multiplier a for dF/dU_t
1995: . x - coordinates of the current point
1996: . numConstants - number of constant parameters
1997: . constants - constant parameters
1998: - g0 - output values at the current point

2000:   Level: intermediate

2002:   Note:
2003:   We are using a first order FEM model for the weak form:
2004:   \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi

2006: .seealso: `PetscDS`, `PetscDSSetJacobian()`
2007: @*/
2008: PetscErrorCode PetscDSGetDynamicJacobian(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (**g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (**g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
2009: {
2010:   PetscPointJac *tmp0, *tmp1, *tmp2, *tmp3;
2011:   PetscInt       n0, n1, n2, n3;

2013:   PetscFunctionBegin;
2015:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2016:   PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
2017:   PetscCall(PetscWeakFormGetDynamicJacobian(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
2018:   *g0 = tmp0 ? tmp0[0] : NULL;
2019:   *g1 = tmp1 ? tmp1[0] : NULL;
2020:   *g2 = tmp2 ? tmp2[0] : NULL;
2021:   *g3 = tmp3 ? tmp3[0] : NULL;
2022:   PetscFunctionReturn(PETSC_SUCCESS);
2023: }

2025: /*@C
2026:   PetscDSSetDynamicJacobian - Set the pointwise dynamic Jacobian, dF/du_t, function for given test and basis fields

2028:   Not Collective

2030:   Input Parameters:
2031: + ds - The `PetscDS`
2032: . f  - The test field number
2033: . g  - The field number
2034: . g0 - integrand for the test and basis function term
2035: . g1 - integrand for the test function and basis function gradient term
2036: . g2 - integrand for the test function gradient and basis function term
2037: - g3 - integrand for the test function gradient and basis function gradient term

2039:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
2040: .vb
2041:    void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2042:            const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2043:            const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2044:            PetscReal t, const PetscReal x[], PetscScalar g0[])
2045: .ve
2046: + dim - the spatial dimension
2047: . Nf - the number of fields
2048: . uOff - the offset into u[] and u_t[] for each field
2049: . uOff_x - the offset into u_x[] for each field
2050: . u - each field evaluated at the current point
2051: . u_t - the time derivative of each field evaluated at the current point
2052: . u_x - the gradient of each field evaluated at the current point
2053: . aOff - the offset into a[] and a_t[] for each auxiliary field
2054: . aOff_x - the offset into a_x[] for each auxiliary field
2055: . a - each auxiliary field evaluated at the current point
2056: . a_t - the time derivative of each auxiliary field evaluated at the current point
2057: . a_x - the gradient of auxiliary each field evaluated at the current point
2058: . t - current time
2059: . u_tShift - the multiplier a for dF/dU_t
2060: . x - coordinates of the current point
2061: . numConstants - number of constant parameters
2062: . constants - constant parameters
2063: - g0 - output values at the current point

2065:   Level: intermediate

2067:   Note:
2068:   We are using a first order FEM model for the weak form:
2069:   \int_\Omega \phi g_0(u, u_t, \nabla u, x, t) \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \nabla \psi

2071: .seealso: `PetscDS`, `PetscDSGetJacobian()`
2072: @*/
2073: PetscErrorCode PetscDSSetDynamicJacobian(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (*g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (*g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
2074: {
2075:   PetscFunctionBegin;
2081:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2082:   PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
2083:   PetscCall(PetscWeakFormSetIndexDynamicJacobian(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
2084:   PetscFunctionReturn(PETSC_SUCCESS);
2085: }

2087: /*@C
2088:   PetscDSGetRiemannSolver - Returns the Riemann solver for the given field

2090:   Not Collective

2092:   Input Parameters:
2093: + ds - The `PetscDS` object
2094: - f  - The field number

2096:   Output Parameter:
2097: . r    - Riemann solver

2099:   Calling sequence of `r`:
2100: .vb
2101:   void r(PetscInt dim, PetscInt Nf, const PetscReal x[], const PetscReal n[], const PetscScalar uL[], const PetscScalar uR[], PetscScalar flux[], void *ctx)
2102: .ve
2103: + dim  - The spatial dimension
2104: . Nf   - The number of fields
2105: . x    - The coordinates at a point on the interface
2106: . n    - The normal vector to the interface
2107: . uL   - The state vector to the left of the interface
2108: . uR   - The state vector to the right of the interface
2109: . flux - output array of flux through the interface
2110: . numConstants - number of constant parameters
2111: . constants - constant parameters
2112: - ctx  - optional user context

2114:   Level: intermediate

2116: .seealso: `PetscDS`, `PetscDSSetRiemannSolver()`
2117: @*/
2118: PetscErrorCode PetscDSGetRiemannSolver(PetscDS ds, PetscInt f, void (**r)(PetscInt dim, PetscInt Nf, const PetscReal x[], const PetscReal n[], const PetscScalar uL[], const PetscScalar uR[], PetscInt numConstants, const PetscScalar constants[], PetscScalar flux[], void *ctx))
2119: {
2120:   PetscRiemannFunc *tmp;
2121:   PetscInt          n;

2123:   PetscFunctionBegin;
2126:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2127:   PetscCall(PetscWeakFormGetRiemannSolver(ds->wf, NULL, 0, f, 0, &n, &tmp));
2128:   *r = tmp ? tmp[0] : NULL;
2129:   PetscFunctionReturn(PETSC_SUCCESS);
2130: }

2132: /*@C
2133:   PetscDSSetRiemannSolver - Sets the Riemann solver for the given field

2135:   Not Collective

2137:   Input Parameters:
2138: + ds - The `PetscDS` object
2139: . f  - The field number
2140: - r  - Riemann solver

2142:   Calling sequence of `r`:
2143: .vb
2144:    void r(PetscInt dim, PetscInt Nf, const PetscReal x[], const PetscReal n[], const PetscScalar uL[], const PetscScalar uR[], PetscScalar flux[], void *ctx)
2145: .ve
2146: + dim  - The spatial dimension
2147: . Nf   - The number of fields
2148: . x    - The coordinates at a point on the interface
2149: . n    - The normal vector to the interface
2150: . uL   - The state vector to the left of the interface
2151: . uR   - The state vector to the right of the interface
2152: . flux - output array of flux through the interface
2153: . numConstants - number of constant parameters
2154: . constants - constant parameters
2155: - ctx  - optional user context

2157:   Level: intermediate

2159: .seealso: `PetscDS`, `PetscDSGetRiemannSolver()`
2160: @*/
2161: PetscErrorCode PetscDSSetRiemannSolver(PetscDS ds, PetscInt f, void (*r)(PetscInt dim, PetscInt Nf, const PetscReal x[], const PetscReal n[], const PetscScalar uL[], const PetscScalar uR[], PetscInt numConstants, const PetscScalar constants[], PetscScalar flux[], void *ctx))
2162: {
2163:   PetscFunctionBegin;
2166:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2167:   PetscCall(PetscWeakFormSetIndexRiemannSolver(ds->wf, NULL, 0, f, 0, 0, r));
2168:   PetscFunctionReturn(PETSC_SUCCESS);
2169: }

2171: /*@C
2172:   PetscDSGetUpdate - Get the pointwise update function for a given field

2174:   Not Collective

2176:   Input Parameters:
2177: + ds - The `PetscDS`
2178: - f  - The field number

2180:   Output Parameter:
2181: . update - update function

2183:   Calling sequence of `update`:
2184: .vb
2185:   void update(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2186:               const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2187:               const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2188:               PetscReal t, const PetscReal x[], PetscScalar uNew[])
2189: .ve
2190: + dim - the spatial dimension
2191: . Nf - the number of fields
2192: . uOff - the offset into u[] and u_t[] for each field
2193: . uOff_x - the offset into u_x[] for each field
2194: . u - each field evaluated at the current point
2195: . u_t - the time derivative of each field evaluated at the current point
2196: . u_x - the gradient of each field evaluated at the current point
2197: . aOff - the offset into a[] and a_t[] for each auxiliary field
2198: . aOff_x - the offset into a_x[] for each auxiliary field
2199: . a - each auxiliary field evaluated at the current point
2200: . a_t - the time derivative of each auxiliary field evaluated at the current point
2201: . a_x - the gradient of auxiliary each field evaluated at the current point
2202: . t - current time
2203: . x - coordinates of the current point
2204: - uNew - new value for field at the current point

2206:   Level: intermediate

2208: .seealso: `PetscDS`, `PetscDSSetUpdate()`, `PetscDSSetResidual()`
2209: @*/
2210: PetscErrorCode PetscDSGetUpdate(PetscDS ds, PetscInt f, void (**update)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uNew[]))
2211: {
2212:   PetscFunctionBegin;
2214:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2215:   if (update) {
2217:     *update = ds->update[f];
2218:   }
2219:   PetscFunctionReturn(PETSC_SUCCESS);
2220: }

2222: /*@C
2223:   PetscDSSetUpdate - Set the pointwise update function for a given field

2225:   Not Collective

2227:   Input Parameters:
2228: + ds     - The `PetscDS`
2229: . f      - The field number
2230: - update - update function

2232:   Calling sequence of `update`:
2233: .vb
2234:   void update(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2235:               const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2236:               const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2237:               PetscReal t, const PetscReal x[], PetscScalar uNew[])
2238: .ve
2239: + dim - the spatial dimension
2240: . Nf - the number of fields
2241: . uOff - the offset into u[] and u_t[] for each field
2242: . uOff_x - the offset into u_x[] for each field
2243: . u - each field evaluated at the current point
2244: . u_t - the time derivative of each field evaluated at the current point
2245: . u_x - the gradient of each field evaluated at the current point
2246: . aOff - the offset into a[] and a_t[] for each auxiliary field
2247: . aOff_x - the offset into a_x[] for each auxiliary field
2248: . a - each auxiliary field evaluated at the current point
2249: . a_t - the time derivative of each auxiliary field evaluated at the current point
2250: . a_x - the gradient of auxiliary each field evaluated at the current point
2251: . t - current time
2252: . x - coordinates of the current point
2253: - uNew - new field values at the current point

2255:   Level: intermediate

2257: .seealso: `PetscDS`, `PetscDSGetResidual()`
2258: @*/
2259: PetscErrorCode PetscDSSetUpdate(PetscDS ds, PetscInt f, void (*update)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uNew[]))
2260: {
2261:   PetscFunctionBegin;
2264:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2265:   PetscCall(PetscDSEnlarge_Static(ds, f + 1));
2266:   ds->update[f] = update;
2267:   PetscFunctionReturn(PETSC_SUCCESS);
2268: }

2270: PetscErrorCode PetscDSGetContext(PetscDS ds, PetscInt f, void *ctx)
2271: {
2272:   PetscFunctionBegin;
2274:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2276:   *(void **)ctx = ds->ctx[f];
2277:   PetscFunctionReturn(PETSC_SUCCESS);
2278: }

2280: PetscErrorCode PetscDSSetContext(PetscDS ds, PetscInt f, void *ctx)
2281: {
2282:   PetscFunctionBegin;
2284:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2285:   PetscCall(PetscDSEnlarge_Static(ds, f + 1));
2286:   ds->ctx[f] = ctx;
2287:   PetscFunctionReturn(PETSC_SUCCESS);
2288: }

2290: /*@C
2291:   PetscDSGetBdResidual - Get the pointwise boundary residual function for a given test field

2293:   Not Collective

2295:   Input Parameters:
2296: + ds - The PetscDS
2297: - f  - The test field number

2299:   Output Parameters:
2300: + f0 - boundary integrand for the test function term
2301: - f1 - boundary integrand for the test function gradient term

2303:   Calling sequence of `f0` and `f1`:
2304: .vb
2305:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2306:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2307:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2308:           PetscReal t, const PetscReal x[], const PetscReal n[], PetscScalar f0[])
2309: .ve
2310: + dim - the spatial dimension
2311: . Nf - the number of fields
2312: . uOff - the offset into u[] and u_t[] for each field
2313: . uOff_x - the offset into u_x[] for each field
2314: . u - each field evaluated at the current point
2315: . u_t - the time derivative of each field evaluated at the current point
2316: . u_x - the gradient of each field evaluated at the current point
2317: . aOff - the offset into a[] and a_t[] for each auxiliary field
2318: . aOff_x - the offset into a_x[] for each auxiliary field
2319: . a - each auxiliary field evaluated at the current point
2320: . a_t - the time derivative of each auxiliary field evaluated at the current point
2321: . a_x - the gradient of auxiliary each field evaluated at the current point
2322: . t - current time
2323: . x - coordinates of the current point
2324: . n - unit normal at the current point
2325: . numConstants - number of constant parameters
2326: . constants - constant parameters
2327: - f0 - output values at the current point

2329:   Level: intermediate

2331:   Note:
2332:   We are using a first order FEM model for the weak form:
2333:   \int_\Gamma \phi {\vec f}_0(u, u_t, \nabla u, x, t) \cdot \hat n + \nabla\phi \cdot {\overleftrightarrow f}_1(u, u_t, \nabla u, x, t) \cdot \hat n

2335: .seealso: `PetscDS`, `PetscDSSetBdResidual()`
2336: @*/
2337: PetscErrorCode PetscDSGetBdResidual(PetscDS ds, PetscInt f, void (**f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (**f1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]))
2338: {
2339:   PetscBdPointFunc *tmp0, *tmp1;
2340:   PetscInt          n0, n1;

2342:   PetscFunctionBegin;
2344:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2345:   PetscCall(PetscWeakFormGetBdResidual(ds->wf, NULL, 0, f, 0, &n0, &tmp0, &n1, &tmp1));
2346:   *f0 = tmp0 ? tmp0[0] : NULL;
2347:   *f1 = tmp1 ? tmp1[0] : NULL;
2348:   PetscFunctionReturn(PETSC_SUCCESS);
2349: }

2351: /*@C
2352:   PetscDSSetBdResidual - Get the pointwise boundary residual function for a given test field

2354:   Not Collective

2356:   Input Parameters:
2357: + ds - The `PetscDS`
2358: . f  - The test field number
2359: . f0 - boundary integrand for the test function term
2360: - f1 - boundary integrand for the test function gradient term

2362:   Calling sequence of `f0` and `f1`:
2363: .vb
2364:   void f0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2365:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2366:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2367:           PetscReal t, const PetscReal x[], const PetscReal n[], PetscScalar f0[])
2368: .ve
2369: + dim - the spatial dimension
2370: . Nf - the number of fields
2371: . uOff - the offset into u[] and u_t[] for each field
2372: . uOff_x - the offset into u_x[] for each field
2373: . u - each field evaluated at the current point
2374: . u_t - the time derivative of each field evaluated at the current point
2375: . u_x - the gradient of each field evaluated at the current point
2376: . aOff - the offset into a[] and a_t[] for each auxiliary field
2377: . aOff_x - the offset into a_x[] for each auxiliary field
2378: . a - each auxiliary field evaluated at the current point
2379: . a_t - the time derivative of each auxiliary field evaluated at the current point
2380: . a_x - the gradient of auxiliary each field evaluated at the current point
2381: . t - current time
2382: . x - coordinates of the current point
2383: . n - unit normal at the current point
2384: . numConstants - number of constant parameters
2385: . constants - constant parameters
2386: - f0 - output values at the current point

2388:   Level: intermediate

2390:   Note:
2391:   We are using a first order FEM model for the weak form:
2392:   \int_\Gamma \phi {\vec f}_0(u, u_t, \nabla u, x, t) \cdot \hat n + \nabla\phi \cdot {\overleftrightarrow f}_1(u, u_t, \nabla u, x, t) \cdot \hat n

2394: .seealso: `PetscDS`, `PetscDSGetBdResidual()`
2395: @*/
2396: PetscErrorCode PetscDSSetBdResidual(PetscDS ds, PetscInt f, void (*f0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]), void (*f1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]))
2397: {
2398:   PetscFunctionBegin;
2400:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2401:   PetscCall(PetscWeakFormSetIndexBdResidual(ds->wf, NULL, 0, f, 0, 0, f0, 0, f1));
2402:   PetscFunctionReturn(PETSC_SUCCESS);
2403: }

2405: /*@
2406:   PetscDSHasBdJacobian - Indicates that boundary Jacobian functions have been set

2408:   Not Collective

2410:   Input Parameter:
2411: . ds - The `PetscDS`

2413:   Output Parameter:
2414: . hasBdJac - flag that pointwise function for the boundary Jacobian has been set

2416:   Level: intermediate

2418: .seealso: `PetscDS`, `PetscDSHasJacobian()`, `PetscDSSetBdJacobian()`, `PetscDSGetBdJacobian()`
2419: @*/
2420: PetscErrorCode PetscDSHasBdJacobian(PetscDS ds, PetscBool *hasBdJac)
2421: {
2422:   PetscFunctionBegin;
2425:   PetscCall(PetscWeakFormHasBdJacobian(ds->wf, hasBdJac));
2426:   PetscFunctionReturn(PETSC_SUCCESS);
2427: }

2429: /*@C
2430:   PetscDSGetBdJacobian - Get the pointwise boundary Jacobian function for given test and basis field

2432:   Not Collective

2434:   Input Parameters:
2435: + ds - The `PetscDS`
2436: . f  - The test field number
2437: - g  - The field number

2439:   Output Parameters:
2440: + g0 - integrand for the test and basis function term
2441: . g1 - integrand for the test function and basis function gradient term
2442: . g2 - integrand for the test function gradient and basis function term
2443: - g3 - integrand for the test function gradient and basis function gradient term

2445:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
2446: .vb
2447:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2448:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2449:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2450:           PetscReal t, const PetscReal x[], const PetscReal n[], PetscScalar g0[])
2451: .ve
2452: + dim - the spatial dimension
2453: . Nf - the number of fields
2454: . uOff - the offset into u[] and u_t[] for each field
2455: . uOff_x - the offset into u_x[] for each field
2456: . u - each field evaluated at the current point
2457: . u_t - the time derivative of each field evaluated at the current point
2458: . u_x - the gradient of each field evaluated at the current point
2459: . aOff - the offset into a[] and a_t[] for each auxiliary field
2460: . aOff_x - the offset into a_x[] for each auxiliary field
2461: . a - each auxiliary field evaluated at the current point
2462: . a_t - the time derivative of each auxiliary field evaluated at the current point
2463: . a_x - the gradient of auxiliary each field evaluated at the current point
2464: . t - current time
2465: . u_tShift - the multiplier a for dF/dU_t
2466: . x - coordinates of the current point
2467: . n - normal at the current point
2468: . numConstants - number of constant parameters
2469: . constants - constant parameters
2470: - g0 - output values at the current point

2472:   Level: intermediate

2474:   Note:
2475:   We are using a first order FEM model for the weak form:
2476:   \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi

2478: .seealso: `PetscDS`, `PetscDSSetBdJacobian()`
2479: @*/
2480: PetscErrorCode PetscDSGetBdJacobian(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (**g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (**g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
2481: {
2482:   PetscBdPointJac *tmp0, *tmp1, *tmp2, *tmp3;
2483:   PetscInt         n0, n1, n2, n3;

2485:   PetscFunctionBegin;
2487:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2488:   PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
2489:   PetscCall(PetscWeakFormGetBdJacobian(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
2490:   *g0 = tmp0 ? tmp0[0] : NULL;
2491:   *g1 = tmp1 ? tmp1[0] : NULL;
2492:   *g2 = tmp2 ? tmp2[0] : NULL;
2493:   *g3 = tmp3 ? tmp3[0] : NULL;
2494:   PetscFunctionReturn(PETSC_SUCCESS);
2495: }

2497: /*@C
2498:   PetscDSSetBdJacobian - Set the pointwise boundary Jacobian function for given test and basis field

2500:   Not Collective

2502:   Input Parameters:
2503: + ds - The PetscDS
2504: . f  - The test field number
2505: . g  - The field number
2506: . g0 - integrand for the test and basis function term
2507: . g1 - integrand for the test function and basis function gradient term
2508: . g2 - integrand for the test function gradient and basis function term
2509: - g3 - integrand for the test function gradient and basis function gradient term

2511:   Calling sequence of `g0`, `g1`, `g2` and `g3`:
2512: .vb
2513:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2514:        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2515:        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2516:        PetscReal t, const PetscReal x[], const PetscReal n[], PetscScalar g0[])
2517: .ve
2518: + dim - the spatial dimension
2519: . Nf - the number of fields
2520: . uOff - the offset into u[] and u_t[] for each field
2521: . uOff_x - the offset into u_x[] for each field
2522: . u - each field evaluated at the current point
2523: . u_t - the time derivative of each field evaluated at the current point
2524: . u_x - the gradient of each field evaluated at the current point
2525: . aOff - the offset into a[] and a_t[] for each auxiliary field
2526: . aOff_x - the offset into a_x[] for each auxiliary field
2527: . a - each auxiliary field evaluated at the current point
2528: . a_t - the time derivative of each auxiliary field evaluated at the current point
2529: . a_x - the gradient of auxiliary each field evaluated at the current point
2530: . t - current time
2531: . u_tShift - the multiplier a for dF/dU_t
2532: . x - coordinates of the current point
2533: . n - normal at the current point
2534: . numConstants - number of constant parameters
2535: . constants - constant parameters
2536: - g0 - output values at the current point

2538:   Level: intermediate

2540:   Note:
2541:   We are using a first order FEM model for the weak form:
2542:   \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi

2544: .seealso: `PetscDS`, `PetscDSGetBdJacobian()`
2545: @*/
2546: PetscErrorCode PetscDSSetBdJacobian(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (*g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (*g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
2547: {
2548:   PetscFunctionBegin;
2554:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2555:   PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
2556:   PetscCall(PetscWeakFormSetIndexBdJacobian(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
2557:   PetscFunctionReturn(PETSC_SUCCESS);
2558: }

2560: /*@
2561:   PetscDSHasBdJacobianPreconditioner - Signals that boundary Jacobian preconditioner functions have been set

2563:   Not Collective

2565:   Input Parameter:
2566: . ds - The `PetscDS`

2568:   Output Parameter:
2569: . hasBdJac - flag that pointwise function for the boundary Jacobian preconditioner has been set

2571:   Level: intermediate

2573: .seealso: `PetscDS`, `PetscDSHasJacobian()`, `PetscDSSetBdJacobian()`, `PetscDSGetBdJacobian()`
2574: @*/
2575: PetscErrorCode PetscDSHasBdJacobianPreconditioner(PetscDS ds, PetscBool *hasBdJacPre)
2576: {
2577:   PetscFunctionBegin;
2580:   PetscCall(PetscWeakFormHasBdJacobianPreconditioner(ds->wf, hasBdJacPre));
2581:   PetscFunctionReturn(PETSC_SUCCESS);
2582: }

2584: /*@C
2585:   PetscDSGetBdJacobianPreconditioner - Get the pointwise boundary Jacobian preconditioner function for given test and basis field

2587:   Not Collective; No Fortran Support

2589:   Input Parameters:
2590: + ds - The `PetscDS`
2591: . f  - The test field number
2592: - g  - The field number

2594:   Output Parameters:
2595: + g0 - integrand for the test and basis function term
2596: . g1 - integrand for the test function and basis function gradient term
2597: . g2 - integrand for the test function gradient and basis function term
2598: - g3 - integrand for the test function gradient and basis function gradient term

2600:    Calling sequence of `g0`, `g1`, `g2` and `g3`:
2601: .vb
2602:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2603:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2604:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2605:           PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
2606: .ve
2607: + dim - the spatial dimension
2608: . Nf - the number of fields
2609: . NfAux - the number of auxiliary fields
2610: . uOff - the offset into u[] and u_t[] for each field
2611: . uOff_x - the offset into u_x[] for each field
2612: . u - each field evaluated at the current point
2613: . u_t - the time derivative of each field evaluated at the current point
2614: . u_x - the gradient of each field evaluated at the current point
2615: . aOff - the offset into a[] and a_t[] for each auxiliary field
2616: . aOff_x - the offset into a_x[] for each auxiliary field
2617: . a - each auxiliary field evaluated at the current point
2618: . a_t - the time derivative of each auxiliary field evaluated at the current point
2619: . a_x - the gradient of auxiliary each field evaluated at the current point
2620: . t - current time
2621: . u_tShift - the multiplier a for dF/dU_t
2622: . x - coordinates of the current point
2623: . n - normal at the current point
2624: . numConstants - number of constant parameters
2625: . constants - constant parameters
2626: - g0 - output values at the current point

2628:   Level: intermediate

2630:   Note:
2631:   We are using a first order FEM model for the weak form:
2632:   \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi

2634: .seealso: `PetscDS`, `PetscDSSetBdJacobianPreconditioner()`
2635: @*/
2636: PetscErrorCode PetscDSGetBdJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (**g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (**g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (**g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (**g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
2637: {
2638:   PetscBdPointJac *tmp0, *tmp1, *tmp2, *tmp3;
2639:   PetscInt         n0, n1, n2, n3;

2641:   PetscFunctionBegin;
2643:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
2644:   PetscCheck(!(g < 0) && !(g >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", g, ds->Nf);
2645:   PetscCall(PetscWeakFormGetBdJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, &n0, &tmp0, &n1, &tmp1, &n2, &tmp2, &n3, &tmp3));
2646:   *g0 = tmp0 ? tmp0[0] : NULL;
2647:   *g1 = tmp1 ? tmp1[0] : NULL;
2648:   *g2 = tmp2 ? tmp2[0] : NULL;
2649:   *g3 = tmp3 ? tmp3[0] : NULL;
2650:   PetscFunctionReturn(PETSC_SUCCESS);
2651: }

2653: /*@C
2654:   PetscDSSetBdJacobianPreconditioner - Set the pointwise boundary Jacobian preconditioner function for given test and basis field

2656:   Not Collective; No Fortran Support

2658:   Input Parameters:
2659: + ds - The `PetscDS`
2660: . f  - The test field number
2661: . g  - The field number
2662: . g0 - integrand for the test and basis function term
2663: . g1 - integrand for the test function and basis function gradient term
2664: . g2 - integrand for the test function gradient and basis function term
2665: - g3 - integrand for the test function gradient and basis function gradient term

2667:    Calling sequence of `g0`, `g1`, `g2` and `g3`:
2668: .vb
2669:   void g0(PetscInt dim, PetscInt Nf, PetscInt NfAux,
2670:           const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
2671:           const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
2672:           PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[])
2673: .ve
2674: + dim - the spatial dimension
2675: . Nf - the number of fields
2676: . NfAux - the number of auxiliary fields
2677: . uOff - the offset into u[] and u_t[] for each field
2678: . uOff_x - the offset into u_x[] for each field
2679: . u - each field evaluated at the current point
2680: . u_t - the time derivative of each field evaluated at the current point
2681: . u_x - the gradient of each field evaluated at the current point
2682: . aOff - the offset into a[] and a_t[] for each auxiliary field
2683: . aOff_x - the offset into a_x[] for each auxiliary field
2684: . a - each auxiliary field evaluated at the current point
2685: . a_t - the time derivative of each auxiliary field evaluated at the current point
2686: . a_x - the gradient of auxiliary each field evaluated at the current point
2687: . t - current time
2688: . u_tShift - the multiplier a for dF/dU_t
2689: . x - coordinates of the current point
2690: . n - normal at the current point
2691: . numConstants - number of constant parameters
2692: . constants - constant parameters
2693: - g0 - output values at the current point

2695:   Level: intermediate

2697:   Note:
2698:   We are using a first order FEM model for the weak form:
2699:   \int_\Gamma \phi {\vec g}_0(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \phi {\vec g}_1(u, u_t, \nabla u, x, t) \cdot \hat n \nabla \psi + \nabla\phi \cdot {\vec g}_2(u, u_t, \nabla u, x, t) \cdot \hat n \psi + \nabla\phi \cdot {\overleftrightarrow g}_3(u, u_t, \nabla u, x, t) \cdot \hat n \cdot \nabla \psi

2701: .seealso: `PetscDS`, `PetscDSGetBdJacobianPreconditioner()`
2702: @*/
2703: PetscErrorCode PetscDSSetBdJacobianPreconditioner(PetscDS ds, PetscInt f, PetscInt g, void (*g0)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g0[]), void (*g1)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g1[]), void (*g2)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g2[]), void (*g3)(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]))
2704: {
2705:   PetscFunctionBegin;
2711:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2712:   PetscCheck(g >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", g);
2713:   PetscCall(PetscWeakFormSetIndexBdJacobianPreconditioner(ds->wf, NULL, 0, f, g, 0, 0, g0, 0, g1, 0, g2, 0, g3));
2714:   PetscFunctionReturn(PETSC_SUCCESS);
2715: }

2717: /*@C
2718:   PetscDSGetExactSolution - Get the pointwise exact solution function for a given test field

2720:   Not Collective

2722:   Input Parameters:
2723: + prob - The PetscDS
2724: - f    - The test field number

2726:   Output Parameters:
2727: + exactSol - exact solution for the test field
2728: - exactCtx - exact solution context

2730:   Calling sequence of `exactSol`:
2731: .vb
2732:   PetscErrorCode sol(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx)
2733: .ve
2734: + dim - the spatial dimension
2735: . t - current time
2736: . x - coordinates of the current point
2737: . Nc - the number of field components
2738: . u - the solution field evaluated at the current point
2739: - ctx - a user context

2741:   Level: intermediate

2743: .seealso: `PetscDS`, `PetscDSSetExactSolution()`, `PetscDSGetExactSolutionTimeDerivative()`
2744: @*/
2745: PetscErrorCode PetscDSGetExactSolution(PetscDS prob, PetscInt f, PetscErrorCode (**sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void **ctx)
2746: {
2747:   PetscFunctionBegin;
2749:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
2750:   if (sol) {
2752:     *sol = prob->exactSol[f];
2753:   }
2754:   if (ctx) {
2756:     *ctx = prob->exactCtx[f];
2757:   }
2758:   PetscFunctionReturn(PETSC_SUCCESS);
2759: }

2761: /*@C
2762:   PetscDSSetExactSolution - Set the pointwise exact solution function for a given test field

2764:   Not Collective

2766:   Input Parameters:
2767: + prob - The `PetscDS`
2768: . f    - The test field number
2769: . sol  - solution function for the test fields
2770: - ctx  - solution context or `NULL`

2772:   Calling sequence of `sol`:
2773: .vb
2774:   PetscErrorCode sol(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx)
2775: .ve
2776: + dim - the spatial dimension
2777: . t - current time
2778: . x - coordinates of the current point
2779: . Nc - the number of field components
2780: . u - the solution field evaluated at the current point
2781: - ctx - a user context

2783:   Level: intermediate

2785: .seealso: `PetscDS`, `PetscDSGetExactSolution()`
2786: @*/
2787: PetscErrorCode PetscDSSetExactSolution(PetscDS prob, PetscInt f, PetscErrorCode (*sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void *ctx)
2788: {
2789:   PetscFunctionBegin;
2791:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2792:   PetscCall(PetscDSEnlarge_Static(prob, f + 1));
2793:   if (sol) {
2795:     prob->exactSol[f] = sol;
2796:   }
2797:   if (ctx) {
2799:     prob->exactCtx[f] = ctx;
2800:   }
2801:   PetscFunctionReturn(PETSC_SUCCESS);
2802: }

2804: /*@C
2805:   PetscDSGetExactSolutionTimeDerivative - Get the pointwise time derivative of the exact solution function for a given test field

2807:   Not Collective

2809:   Input Parameters:
2810: + prob - The `PetscDS`
2811: - f    - The test field number

2813:   Output Parameters:
2814: + exactSol - time derivative of the exact solution for the test field
2815: - exactCtx - time derivative of the exact solution context

2817:   Calling sequence of `exactSol`:
2818: .vb
2819:   PetscErrorCode sol(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx)
2820: .ve
2821: + dim - the spatial dimension
2822: . t - current time
2823: . x - coordinates of the current point
2824: . Nc - the number of field components
2825: . u - the solution field evaluated at the current point
2826: - ctx - a user context

2828:   Level: intermediate

2830: .seealso: `PetscDS`, `PetscDSSetExactSolutionTimeDerivative()`, `PetscDSGetExactSolution()`
2831: @*/
2832: PetscErrorCode PetscDSGetExactSolutionTimeDerivative(PetscDS prob, PetscInt f, PetscErrorCode (**sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void **ctx)
2833: {
2834:   PetscFunctionBegin;
2836:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
2837:   if (sol) {
2839:     *sol = prob->exactSol_t[f];
2840:   }
2841:   if (ctx) {
2843:     *ctx = prob->exactCtx_t[f];
2844:   }
2845:   PetscFunctionReturn(PETSC_SUCCESS);
2846: }

2848: /*@C
2849:   PetscDSSetExactSolutionTimeDerivative - Set the pointwise time derivative of the exact solution function for a given test field

2851:   Not Collective

2853:   Input Parameters:
2854: + prob - The `PetscDS`
2855: . f    - The test field number
2856: . sol  - time derivative of the solution function for the test fields
2857: - ctx  - time derivative of the solution context or `NULL`

2859:   Calling sequence of `sol`:
2860: .vb
2861:   PetscErrorCode sol(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx)
2862: .ve
2863: + dim - the spatial dimension
2864: . t - current time
2865: . x - coordinates of the current point
2866: . Nc - the number of field components
2867: . u - the solution field evaluated at the current point
2868: - ctx - a user context

2870:   Level: intermediate

2872: .seealso: `PetscDS`, `PetscDSGetExactSolutionTimeDerivative()`, `PetscDSSetExactSolution()`
2873: @*/
2874: PetscErrorCode PetscDSSetExactSolutionTimeDerivative(PetscDS prob, PetscInt f, PetscErrorCode (*sol)(PetscInt dim, PetscReal t, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx), void *ctx)
2875: {
2876:   PetscFunctionBegin;
2878:   PetscCheck(f >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be non-negative", f);
2879:   PetscCall(PetscDSEnlarge_Static(prob, f + 1));
2880:   if (sol) {
2882:     prob->exactSol_t[f] = sol;
2883:   }
2884:   if (ctx) {
2886:     prob->exactCtx_t[f] = ctx;
2887:   }
2888:   PetscFunctionReturn(PETSC_SUCCESS);
2889: }

2891: /*@C
2892:   PetscDSGetConstants - Returns the array of constants passed to point functions

2894:   Not Collective

2896:   Input Parameter:
2897: . prob - The `PetscDS` object

2899:   Output Parameters:
2900: + numConstants - The number of constants
2901: - constants    - The array of constants, NULL if there are none

2903:   Level: intermediate

2905: .seealso: `PetscDS`, `PetscDSSetConstants()`, `PetscDSCreate()`
2906: @*/
2907: PetscErrorCode PetscDSGetConstants(PetscDS prob, PetscInt *numConstants, const PetscScalar *constants[])
2908: {
2909:   PetscFunctionBegin;
2911:   if (numConstants) {
2913:     *numConstants = prob->numConstants;
2914:   }
2915:   if (constants) {
2917:     *constants = prob->constants;
2918:   }
2919:   PetscFunctionReturn(PETSC_SUCCESS);
2920: }

2922: /*@C
2923:   PetscDSSetConstants - Set the array of constants passed to point functions

2925:   Not Collective

2927:   Input Parameters:
2928: + prob         - The `PetscDS` object
2929: . numConstants - The number of constants
2930: - constants    - The array of constants, NULL if there are none

2932:   Level: intermediate

2934: .seealso: `PetscDS`, `PetscDSGetConstants()`, `PetscDSCreate()`
2935: @*/
2936: PetscErrorCode PetscDSSetConstants(PetscDS prob, PetscInt numConstants, PetscScalar constants[])
2937: {
2938:   PetscFunctionBegin;
2940:   if (numConstants != prob->numConstants) {
2941:     PetscCall(PetscFree(prob->constants));
2942:     prob->numConstants = numConstants;
2943:     if (prob->numConstants) {
2944:       PetscCall(PetscMalloc1(prob->numConstants, &prob->constants));
2945:     } else {
2946:       prob->constants = NULL;
2947:     }
2948:   }
2949:   if (prob->numConstants) {
2951:     PetscCall(PetscArraycpy(prob->constants, constants, prob->numConstants));
2952:   }
2953:   PetscFunctionReturn(PETSC_SUCCESS);
2954: }

2956: /*@
2957:   PetscDSGetFieldIndex - Returns the index of the given field

2959:   Not Collective

2961:   Input Parameters:
2962: + prob - The `PetscDS` object
2963: - disc - The discretization object

2965:   Output Parameter:
2966: . f - The field number

2968:   Level: beginner

2970: .seealso: `PetscDS`, `PetscGetDiscretization()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
2971: @*/
2972: PetscErrorCode PetscDSGetFieldIndex(PetscDS prob, PetscObject disc, PetscInt *f)
2973: {
2974:   PetscInt g;

2976:   PetscFunctionBegin;
2979:   *f = -1;
2980:   for (g = 0; g < prob->Nf; ++g) {
2981:     if (disc == prob->disc[g]) break;
2982:   }
2983:   PetscCheck(g != prob->Nf, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Field not found in PetscDS.");
2984:   *f = g;
2985:   PetscFunctionReturn(PETSC_SUCCESS);
2986: }

2988: /*@
2989:   PetscDSGetFieldSize - Returns the size of the given field in the full space basis

2991:   Not Collective

2993:   Input Parameters:
2994: + prob - The `PetscDS` object
2995: - f - The field number

2997:   Output Parameter:
2998: . size - The size

3000:   Level: beginner

3002: .seealso: `PetscDS`, `PetscDSGetFieldOffset()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3003: @*/
3004: PetscErrorCode PetscDSGetFieldSize(PetscDS prob, PetscInt f, PetscInt *size)
3005: {
3006:   PetscFunctionBegin;
3009:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
3010:   PetscCall(PetscDSSetUp(prob));
3011:   *size = prob->Nb[f];
3012:   PetscFunctionReturn(PETSC_SUCCESS);
3013: }

3015: /*@
3016:   PetscDSGetFieldOffset - Returns the offset of the given field in the full space basis

3018:   Not Collective

3020:   Input Parameters:
3021: + prob - The `PetscDS` object
3022: - f - The field number

3024:   Output Parameter:
3025: . off - The offset

3027:   Level: beginner

3029: .seealso: `PetscDS`, `PetscDSGetFieldSize()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3030: @*/
3031: PetscErrorCode PetscDSGetFieldOffset(PetscDS prob, PetscInt f, PetscInt *off)
3032: {
3033:   PetscInt size, g;

3035:   PetscFunctionBegin;
3038:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
3039:   *off = 0;
3040:   for (g = 0; g < f; ++g) {
3041:     PetscCall(PetscDSGetFieldSize(prob, g, &size));
3042:     *off += size;
3043:   }
3044:   PetscFunctionReturn(PETSC_SUCCESS);
3045: }

3047: /*@
3048:   PetscDSGetFieldOffsetCohesive - Returns the offset of the given field in the full space basis on a cohesive cell

3050:   Not Collective

3052:   Input Parameters:
3053: + prob - The `PetscDS` object
3054: - f - The field number

3056:   Output Parameter:
3057: . off - The offset

3059:   Level: beginner

3061: .seealso: `PetscDS`, `PetscDSGetFieldSize()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3062: @*/
3063: PetscErrorCode PetscDSGetFieldOffsetCohesive(PetscDS ds, PetscInt f, PetscInt *off)
3064: {
3065:   PetscInt size, g;

3067:   PetscFunctionBegin;
3070:   PetscCheck(!(f < 0) && !(f >= ds->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, ds->Nf);
3071:   *off = 0;
3072:   for (g = 0; g < f; ++g) {
3073:     PetscBool cohesive;

3075:     PetscCall(PetscDSGetCohesive(ds, g, &cohesive));
3076:     PetscCall(PetscDSGetFieldSize(ds, g, &size));
3077:     *off += cohesive ? size : size * 2;
3078:   }
3079:   PetscFunctionReturn(PETSC_SUCCESS);
3080: }

3082: /*@
3083:   PetscDSGetDimensions - Returns the size of the approximation space for each field on an evaluation point

3085:   Not Collective

3087:   Input Parameter:
3088: . prob - The `PetscDS` object

3090:   Output Parameter:
3091: . dimensions - The number of dimensions

3093:   Level: beginner

3095: .seealso: `PetscDS`, `PetscDSGetComponentOffsets()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3096: @*/
3097: PetscErrorCode PetscDSGetDimensions(PetscDS prob, PetscInt *dimensions[])
3098: {
3099:   PetscFunctionBegin;
3101:   PetscCall(PetscDSSetUp(prob));
3103:   *dimensions = prob->Nb;
3104:   PetscFunctionReturn(PETSC_SUCCESS);
3105: }

3107: /*@
3108:   PetscDSGetComponents - Returns the number of components for each field on an evaluation point

3110:   Not Collective

3112:   Input Parameter:
3113: . prob - The `PetscDS` object

3115:   Output Parameter:
3116: . components - The number of components

3118:   Level: beginner

3120: .seealso: `PetscDS`, `PetscDSGetComponentOffsets()`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3121: @*/
3122: PetscErrorCode PetscDSGetComponents(PetscDS prob, PetscInt *components[])
3123: {
3124:   PetscFunctionBegin;
3126:   PetscCall(PetscDSSetUp(prob));
3128:   *components = prob->Nc;
3129:   PetscFunctionReturn(PETSC_SUCCESS);
3130: }

3132: /*@
3133:   PetscDSGetComponentOffset - Returns the offset of the given field on an evaluation point

3135:   Not Collective

3137:   Input Parameters:
3138: + prob - The `PetscDS` object
3139: - f - The field number

3141:   Output Parameter:
3142: . off - The offset

3144:   Level: beginner

3146: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3147: @*/
3148: PetscErrorCode PetscDSGetComponentOffset(PetscDS prob, PetscInt f, PetscInt *off)
3149: {
3150:   PetscFunctionBegin;
3153:   PetscCheck(!(f < 0) && !(f >= prob->Nf), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field number %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, prob->Nf);
3154:   PetscCall(PetscDSSetUp(prob));
3155:   *off = prob->off[f];
3156:   PetscFunctionReturn(PETSC_SUCCESS);
3157: }

3159: /*@
3160:   PetscDSGetComponentOffsets - Returns the offset of each field on an evaluation point

3162:   Not Collective

3164:   Input Parameter:
3165: . prob - The `PetscDS` object

3167:   Output Parameter:
3168: . offsets - The offsets

3170:   Level: beginner

3172: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3173: @*/
3174: PetscErrorCode PetscDSGetComponentOffsets(PetscDS prob, PetscInt *offsets[])
3175: {
3176:   PetscFunctionBegin;
3179:   PetscCall(PetscDSSetUp(prob));
3180:   *offsets = prob->off;
3181:   PetscFunctionReturn(PETSC_SUCCESS);
3182: }

3184: /*@
3185:   PetscDSGetComponentDerivativeOffsets - Returns the offset of each field derivative on an evaluation point

3187:   Not Collective

3189:   Input Parameter:
3190: . prob - The `PetscDS` object

3192:   Output Parameter:
3193: . offsets - The offsets

3195:   Level: beginner

3197: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3198: @*/
3199: PetscErrorCode PetscDSGetComponentDerivativeOffsets(PetscDS prob, PetscInt *offsets[])
3200: {
3201:   PetscFunctionBegin;
3204:   PetscCall(PetscDSSetUp(prob));
3205:   *offsets = prob->offDer;
3206:   PetscFunctionReturn(PETSC_SUCCESS);
3207: }

3209: /*@
3210:   PetscDSGetComponentOffsetsCohesive - Returns the offset of each field on an evaluation point

3212:   Not Collective

3214:   Input Parameters:
3215: + ds - The `PetscDS` object
3216: - s  - The cohesive side, 0 for negative, 1 for positive, 2 for cohesive

3218:   Output Parameter:
3219: . offsets - The offsets

3221:   Level: beginner

3223: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3224: @*/
3225: PetscErrorCode PetscDSGetComponentOffsetsCohesive(PetscDS ds, PetscInt s, PetscInt *offsets[])
3226: {
3227:   PetscFunctionBegin;
3230:   PetscCheck(ds->isCohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cohesive offsets are only valid for a cohesive DS");
3231:   PetscCheck(!(s < 0) && !(s > 2), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cohesive side %" PetscInt_FMT " is not in [0, 2]", s);
3232:   PetscCall(PetscDSSetUp(ds));
3233:   *offsets = ds->offCohesive[s];
3234:   PetscFunctionReturn(PETSC_SUCCESS);
3235: }

3237: /*@
3238:   PetscDSGetComponentDerivativeOffsetsCohesive - Returns the offset of each field derivative on an evaluation point

3240:   Not Collective

3242:   Input Parameters:
3243: + ds - The `PetscDS` object
3244: - s  - The cohesive side, 0 for negative, 1 for positive, 2 for cohesive

3246:   Output Parameter:
3247: . offsets - The offsets

3249:   Level: beginner

3251: .seealso: `PetscDS`, `PetscDSGetNumFields()`, `PetscDSCreate()`
3252: @*/
3253: PetscErrorCode PetscDSGetComponentDerivativeOffsetsCohesive(PetscDS ds, PetscInt s, PetscInt *offsets[])
3254: {
3255:   PetscFunctionBegin;
3258:   PetscCheck(ds->isCohesive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Cohesive offsets are only valid for a cohesive DS");
3259:   PetscCheck(!(s < 0) && !(s > 2), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cohesive side %" PetscInt_FMT " is not in [0, 2]", s);
3260:   PetscCall(PetscDSSetUp(ds));
3261:   *offsets = ds->offDerCohesive[s];
3262:   PetscFunctionReturn(PETSC_SUCCESS);
3263: }

3265: /*@C
3266:   PetscDSGetTabulation - Return the basis tabulation at quadrature points for the volume discretization

3268:   Not Collective

3270:   Input Parameter:
3271: . prob - The `PetscDS` object

3273:   Output Parameter:
3274: . T - The basis function and derivatives tabulation at quadrature points for each field

3276:   Level: intermediate

3278: .seealso: `PetscDS`, `PetscTabulation`, `PetscDSCreate()`
3279: @*/
3280: PetscErrorCode PetscDSGetTabulation(PetscDS prob, PetscTabulation *T[])
3281: {
3282:   PetscFunctionBegin;
3285:   PetscCall(PetscDSSetUp(prob));
3286:   *T = prob->T;
3287:   PetscFunctionReturn(PETSC_SUCCESS);
3288: }

3290: /*@C
3291:   PetscDSGetFaceTabulation - Return the basis tabulation at quadrature points on the faces

3293:   Not Collective

3295:   Input Parameter:
3296: . prob - The `PetscDS` object

3298:   Output Parameter:
3299: . Tf - The basis function and derivative tabulation on each local face at quadrature points for each and field

3301:   Level: intermediate

3303: .seealso: `PetscTabulation`, `PetscDS`, `PetscDSGetTabulation()`, `PetscDSCreate()`
3304: @*/
3305: PetscErrorCode PetscDSGetFaceTabulation(PetscDS prob, PetscTabulation *Tf[])
3306: {
3307:   PetscFunctionBegin;
3310:   PetscCall(PetscDSSetUp(prob));
3311:   *Tf = prob->Tf;
3312:   PetscFunctionReturn(PETSC_SUCCESS);
3313: }

3315: PetscErrorCode PetscDSGetEvaluationArrays(PetscDS prob, PetscScalar **u, PetscScalar **u_t, PetscScalar **u_x)
3316: {
3317:   PetscFunctionBegin;
3319:   PetscCall(PetscDSSetUp(prob));
3320:   if (u) {
3322:     *u = prob->u;
3323:   }
3324:   if (u_t) {
3326:     *u_t = prob->u_t;
3327:   }
3328:   if (u_x) {
3330:     *u_x = prob->u_x;
3331:   }
3332:   PetscFunctionReturn(PETSC_SUCCESS);
3333: }

3335: PetscErrorCode PetscDSGetWeakFormArrays(PetscDS prob, PetscScalar **f0, PetscScalar **f1, PetscScalar **g0, PetscScalar **g1, PetscScalar **g2, PetscScalar **g3)
3336: {
3337:   PetscFunctionBegin;
3339:   PetscCall(PetscDSSetUp(prob));
3340:   if (f0) {
3342:     *f0 = prob->f0;
3343:   }
3344:   if (f1) {
3346:     *f1 = prob->f1;
3347:   }
3348:   if (g0) {
3350:     *g0 = prob->g0;
3351:   }
3352:   if (g1) {
3354:     *g1 = prob->g1;
3355:   }
3356:   if (g2) {
3358:     *g2 = prob->g2;
3359:   }
3360:   if (g3) {
3362:     *g3 = prob->g3;
3363:   }
3364:   PetscFunctionReturn(PETSC_SUCCESS);
3365: }

3367: PetscErrorCode PetscDSGetWorkspace(PetscDS prob, PetscReal **x, PetscScalar **basisReal, PetscScalar **basisDerReal, PetscScalar **testReal, PetscScalar **testDerReal)
3368: {
3369:   PetscFunctionBegin;
3371:   PetscCall(PetscDSSetUp(prob));
3372:   if (x) {
3374:     *x = prob->x;
3375:   }
3376:   if (basisReal) {
3378:     *basisReal = prob->basisReal;
3379:   }
3380:   if (basisDerReal) {
3382:     *basisDerReal = prob->basisDerReal;
3383:   }
3384:   if (testReal) {
3386:     *testReal = prob->testReal;
3387:   }
3388:   if (testDerReal) {
3390:     *testDerReal = prob->testDerReal;
3391:   }
3392:   PetscFunctionReturn(PETSC_SUCCESS);
3393: }

3395: /*@C
3396:   PetscDSAddBoundary - Add a boundary condition to the model. The pointwise functions are used to provide boundary values for essential boundary conditions.
3397:   In FEM, they are acting upon by dual basis functionals to generate FEM coefficients which are fixed. Natural boundary conditions signal to PETSc that boundary
3398:   integrals should be performed, using the kernels from `PetscDSSetBdResidual()`.

3400:   Collective

3402:   Input Parameters:
3403: + ds       - The PetscDS object
3404: . type     - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3405: . name     - The BC name
3406: . label    - The label defining constrained points
3407: . Nv       - The number of `DMLabel` values for constrained points
3408: . values   - An array of label values for constrained points
3409: . field    - The field to constrain
3410: . Nc       - The number of constrained field components (0 will constrain all fields)
3411: . comps    - An array of constrained component numbers
3412: . bcFunc   - A pointwise function giving boundary values
3413: . bcFunc_t - A pointwise function giving the time derivative of the boundary values, or NULL
3414: - ctx      - An optional user context for bcFunc

3416:   Output Parameter:
3417: - bd       - The boundary number

3419:   Options Database Keys:
3420: + -bc_<boundary name> <num> - Overrides the boundary ids
3421: - -bc_<boundary name>_comp <num> - Overrides the boundary components

3423:   Level: developer

3425:   Note:
3426:   Both `bcFunc` and `bcFunc_t` will depend on the boundary condition type. If the type if `DM_BC_ESSENTIAL`, Then the calling sequence is:

3428: $ void bcFunc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar bcval[])

3430:   If the type is `DM_BC_ESSENTIAL_FIELD` or other _FIELD value, then the calling sequence is:
3431: .vb
3432:   void bcFunc(PetscInt dim, PetscInt Nf, PetscInt NfAux,
3433:               const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
3434:               const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
3435:               PetscReal time, const PetscReal x[], PetscScalar bcval[])
3436: .ve
3437: + dim - the spatial dimension
3438: . Nf - the number of fields
3439: . uOff - the offset into u[] and u_t[] for each field
3440: . uOff_x - the offset into u_x[] for each field
3441: . u - each field evaluated at the current point
3442: . u_t - the time derivative of each field evaluated at the current point
3443: . u_x - the gradient of each field evaluated at the current point
3444: . aOff - the offset into a[] and a_t[] for each auxiliary field
3445: . aOff_x - the offset into a_x[] for each auxiliary field
3446: . a - each auxiliary field evaluated at the current point
3447: . a_t - the time derivative of each auxiliary field evaluated at the current point
3448: . a_x - the gradient of auxiliary each field evaluated at the current point
3449: . t - current time
3450: . x - coordinates of the current point
3451: . numConstants - number of constant parameters
3452: . constants - constant parameters
3453: - bcval - output values at the current point

3455: .seealso: `PetscDS`, `PetscWeakForm`, `DMLabel`, `DMBoundaryConditionType`, `PetscDSAddBoundaryByName()`, `PetscDSGetBoundary()`, `PetscDSSetResidual()`, `PetscDSSetBdResidual()`
3456: @*/
3457: PetscErrorCode PetscDSAddBoundary(PetscDS ds, DMBoundaryConditionType type, const char name[], DMLabel label, PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx, PetscInt *bd)
3458: {
3459:   DSBoundary  head = ds->boundary, b;
3460:   PetscInt    n    = 0;
3461:   const char *lname;

3463:   PetscFunctionBegin;
3471:   PetscCheck(field >= 0 && field < ds->Nf, PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", field, ds->Nf);
3472:   if (Nc > 0) {
3473:     PetscInt *fcomps;
3474:     PetscInt  c;

3476:     PetscCall(PetscDSGetComponents(ds, &fcomps));
3477:     PetscCheck(Nc <= fcomps[field], PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_OUTOFRANGE, "Number of constrained components %" PetscInt_FMT " > %" PetscInt_FMT " components for field %" PetscInt_FMT, Nc, fcomps[field], field);
3478:     for (c = 0; c < Nc; ++c) {
3479:       PetscCheck(comps[c] >= 0 && comps[c] < fcomps[field], PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_OUTOFRANGE, "Constrained component[%" PetscInt_FMT "] %" PetscInt_FMT " not in [0, %" PetscInt_FMT ") components for field %" PetscInt_FMT, c, comps[c], fcomps[field], field);
3480:     }
3481:   }
3482:   PetscCall(PetscNew(&b));
3483:   PetscCall(PetscStrallocpy(name, (char **)&b->name));
3484:   PetscCall(PetscWeakFormCreate(PETSC_COMM_SELF, &b->wf));
3485:   PetscCall(PetscWeakFormSetNumFields(b->wf, ds->Nf));
3486:   PetscCall(PetscMalloc1(Nv, &b->values));
3487:   if (Nv) PetscCall(PetscArraycpy(b->values, values, Nv));
3488:   PetscCall(PetscMalloc1(Nc, &b->comps));
3489:   if (Nc) PetscCall(PetscArraycpy(b->comps, comps, Nc));
3490:   PetscCall(PetscObjectGetName((PetscObject)label, &lname));
3491:   PetscCall(PetscStrallocpy(lname, (char **)&b->lname));
3492:   b->type   = type;
3493:   b->label  = label;
3494:   b->Nv     = Nv;
3495:   b->field  = field;
3496:   b->Nc     = Nc;
3497:   b->func   = bcFunc;
3498:   b->func_t = bcFunc_t;
3499:   b->ctx    = ctx;
3500:   b->next   = NULL;
3501:   /* Append to linked list so that we can preserve the order */
3502:   if (!head) ds->boundary = b;
3503:   while (head) {
3504:     if (!head->next) {
3505:       head->next = b;
3506:       head       = b;
3507:     }
3508:     head = head->next;
3509:     ++n;
3510:   }
3511:   if (bd) {
3513:     *bd = n;
3514:   }
3515:   PetscFunctionReturn(PETSC_SUCCESS);
3516: }

3518: /*@C
3519:   PetscDSAddBoundaryByName - Add a boundary condition to the model. The pointwise functions are used to provide boundary values for essential boundary conditions.
3520:   In FEM, they are acting upon by dual basis functionals to generate FEM coefficients which are fixed. Natural boundary conditions signal to PETSc that
3521:   boundary integrals should be performed, using the kernels from `PetscDSSetBdResidual()`.

3523:   Collective

3525:   Input Parameters:
3526: + ds       - The `PetscDS` object
3527: . type     - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3528: . name     - The BC name
3529: . lname    - The naem of the label defining constrained points
3530: . Nv       - The number of `DMLabel` values for constrained points
3531: . values   - An array of label values for constrained points
3532: . field    - The field to constrain
3533: . Nc       - The number of constrained field components (0 will constrain all fields)
3534: . comps    - An array of constrained component numbers
3535: . bcFunc   - A pointwise function giving boundary values
3536: . bcFunc_t - A pointwise function giving the time derivative of the boundary values, or NULL
3537: - ctx      - An optional user context for bcFunc

3539:   Output Parameter:
3540: - bd       - The boundary number

3542:   Options Database Keys:
3543: + -bc_<boundary name> <num> - Overrides the boundary ids
3544: - -bc_<boundary name>_comp <num> - Overrides the boundary components

3546:   Calling Sequence of `bcFunc` and `bcFunc_t`:
3547:   If the type is `DM_BC_ESSENTIAL`
3548: .vb
3549:   void bcFunc(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar bcval[])
3550: .ve
3551:   If the type is `DM_BC_ESSENTIAL_FIELD` or other _FIELD value,
3552: .vb
3553:   void bcFunc(PetscInt dim, PetscInt Nf, PetscInt NfAux,
3554:               const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
3555:               const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
3556:               PetscReal time, const PetscReal x[], PetscScalar bcval[])
3557: .ve
3558: + dim - the spatial dimension
3559: . Nf - the number of fields
3560: . uOff - the offset into u[] and u_t[] for each field
3561: . uOff_x - the offset into u_x[] for each field
3562: . u - each field evaluated at the current point
3563: . u_t - the time derivative of each field evaluated at the current point
3564: . u_x - the gradient of each field evaluated at the current point
3565: . aOff - the offset into a[] and a_t[] for each auxiliary field
3566: . aOff_x - the offset into a_x[] for each auxiliary field
3567: . a - each auxiliary field evaluated at the current point
3568: . a_t - the time derivative of each auxiliary field evaluated at the current point
3569: . a_x - the gradient of auxiliary each field evaluated at the current point
3570: . t - current time
3571: . x - coordinates of the current point
3572: . numConstants - number of constant parameters
3573: . constants - constant parameters
3574: - bcval - output values at the current point

3576:   Level: developer

3578:   Note:
3579:   This function should only be used with `DMFOREST` currently, since labels cannot be defined before the underlying `DMPLEX` is built.

3581: .seealso: `PetscDS`, `PetscWeakForm`, `DMLabel`, `DMBoundaryConditionType`, `PetscDSAddBoundary()`, `PetscDSGetBoundary()`, `PetscDSSetResidual()`, `PetscDSSetBdResidual()`
3582: @*/
3583: PetscErrorCode PetscDSAddBoundaryByName(PetscDS ds, DMBoundaryConditionType type, const char name[], const char lname[], PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx, PetscInt *bd)
3584: {
3585:   DSBoundary head = ds->boundary, b;
3586:   PetscInt   n    = 0;

3588:   PetscFunctionBegin;
3596:   PetscCall(PetscNew(&b));
3597:   PetscCall(PetscStrallocpy(name, (char **)&b->name));
3598:   PetscCall(PetscWeakFormCreate(PETSC_COMM_SELF, &b->wf));
3599:   PetscCall(PetscWeakFormSetNumFields(b->wf, ds->Nf));
3600:   PetscCall(PetscMalloc1(Nv, &b->values));
3601:   if (Nv) PetscCall(PetscArraycpy(b->values, values, Nv));
3602:   PetscCall(PetscMalloc1(Nc, &b->comps));
3603:   if (Nc) PetscCall(PetscArraycpy(b->comps, comps, Nc));
3604:   PetscCall(PetscStrallocpy(lname, (char **)&b->lname));
3605:   b->type   = type;
3606:   b->label  = NULL;
3607:   b->Nv     = Nv;
3608:   b->field  = field;
3609:   b->Nc     = Nc;
3610:   b->func   = bcFunc;
3611:   b->func_t = bcFunc_t;
3612:   b->ctx    = ctx;
3613:   b->next   = NULL;
3614:   /* Append to linked list so that we can preserve the order */
3615:   if (!head) ds->boundary = b;
3616:   while (head) {
3617:     if (!head->next) {
3618:       head->next = b;
3619:       head       = b;
3620:     }
3621:     head = head->next;
3622:     ++n;
3623:   }
3624:   if (bd) {
3626:     *bd = n;
3627:   }
3628:   PetscFunctionReturn(PETSC_SUCCESS);
3629: }

3631: /*@C
3632:   PetscDSUpdateBoundary - Change a boundary condition for the model. The pointwise functions are used to provide boundary values for essential boundary conditions.
3633:   In FEM, they are acting upon by dual basis functionals to generate FEM coefficients which are fixed. Natural boundary conditions signal to PETSc that boundary integrals
3634:   should be performed, using the kernels from `PetscDSSetBdResidual()`.

3636:   Input Parameters:
3637: + ds       - The `PetscDS` object
3638: . bd       - The boundary condition number
3639: . type     - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3640: . name     - The BC name
3641: . label    - The label defining constrained points
3642: . Nv       - The number of `DMLabel` ids for constrained points
3643: . values   - An array of ids for constrained points
3644: . field    - The field to constrain
3645: . Nc       - The number of constrained field components
3646: . comps    - An array of constrained component numbers
3647: . bcFunc   - A pointwise function giving boundary values
3648: . bcFunc_t - A pointwise function giving the time derivative of the boundary values, or NULL
3649: - ctx      - An optional user context for bcFunc

3651:   Level: developer

3653:   Note:
3654:   The boundary condition number is the order in which it was registered. The user can get the number of boundary conditions from `PetscDSGetNumBoundary()`.
3655:   See `PetscDSAddBoundary()` for a description of the calling sequences for the callbacks.

3657: .seealso: `PetscDS`, `PetscWeakForm`, `DMBoundaryConditionType`, `PetscDSAddBoundary()`, `PetscDSGetBoundary()`, `PetscDSGetNumBoundary()`, `DMLabel`
3658: @*/
3659: PetscErrorCode PetscDSUpdateBoundary(PetscDS ds, PetscInt bd, DMBoundaryConditionType type, const char name[], DMLabel label, PetscInt Nv, const PetscInt values[], PetscInt field, PetscInt Nc, const PetscInt comps[], void (*bcFunc)(void), void (*bcFunc_t)(void), void *ctx)
3660: {
3661:   DSBoundary b = ds->boundary;
3662:   PetscInt   n = 0;

3664:   PetscFunctionBegin;
3666:   while (b) {
3667:     if (n == bd) break;
3668:     b = b->next;
3669:     ++n;
3670:   }
3671:   PetscCheck(b, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Boundary %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", bd, n);
3672:   if (name) {
3673:     PetscCall(PetscFree(b->name));
3674:     PetscCall(PetscStrallocpy(name, (char **)&b->name));
3675:   }
3676:   b->type = type;
3677:   if (label) {
3678:     const char *name;

3680:     b->label = label;
3681:     PetscCall(PetscFree(b->lname));
3682:     PetscCall(PetscObjectGetName((PetscObject)label, &name));
3683:     PetscCall(PetscStrallocpy(name, (char **)&b->lname));
3684:   }
3685:   if (Nv >= 0) {
3686:     b->Nv = Nv;
3687:     PetscCall(PetscFree(b->values));
3688:     PetscCall(PetscMalloc1(Nv, &b->values));
3689:     if (Nv) PetscCall(PetscArraycpy(b->values, values, Nv));
3690:   }
3691:   if (field >= 0) b->field = field;
3692:   if (Nc >= 0) {
3693:     b->Nc = Nc;
3694:     PetscCall(PetscFree(b->comps));
3695:     PetscCall(PetscMalloc1(Nc, &b->comps));
3696:     if (Nc) PetscCall(PetscArraycpy(b->comps, comps, Nc));
3697:   }
3698:   if (bcFunc) b->func = bcFunc;
3699:   if (bcFunc_t) b->func_t = bcFunc_t;
3700:   if (ctx) b->ctx = ctx;
3701:   PetscFunctionReturn(PETSC_SUCCESS);
3702: }

3704: /*@
3705:   PetscDSGetNumBoundary - Get the number of registered BC

3707:   Input Parameter:
3708: . ds - The `PetscDS` object

3710:   Output Parameter:
3711: . numBd - The number of BC

3713:   Level: intermediate

3715: .seealso: `PetscDS`, `PetscDSAddBoundary()`, `PetscDSGetBoundary()`
3716: @*/
3717: PetscErrorCode PetscDSGetNumBoundary(PetscDS ds, PetscInt *numBd)
3718: {
3719:   DSBoundary b = ds->boundary;

3721:   PetscFunctionBegin;
3724:   *numBd = 0;
3725:   while (b) {
3726:     ++(*numBd);
3727:     b = b->next;
3728:   }
3729:   PetscFunctionReturn(PETSC_SUCCESS);
3730: }

3732: /*@C
3733:   PetscDSGetBoundary - Gets a boundary condition to the model

3735:   Input Parameters:
3736: + ds          - The `PetscDS` object
3737: - bd          - The BC number

3739:   Output Parameters:
3740: + wf       - The `PetscWeakForm` holding the pointwise functions
3741: . type     - The type of condition, e.g. `DM_BC_ESSENTIAL`/`DM_BC_ESSENTIAL_FIELD` (Dirichlet), or `DM_BC_NATURAL` (Neumann)
3742: . name     - The BC name
3743: . label    - The label defining constrained points
3744: . Nv       - The number of `DMLabel` ids for constrained points
3745: . values   - An array of ids for constrained points
3746: . field    - The field to constrain
3747: . Nc       - The number of constrained field components
3748: . comps    - An array of constrained component numbers
3749: . bcFunc   - A pointwise function giving boundary values
3750: . bcFunc_t - A pointwise function giving the time derivative of the boundary values
3751: - ctx      - An optional user context for bcFunc

3753:   Options Database Keys:
3754: + -bc_<boundary name> <num> - Overrides the boundary ids
3755: - -bc_<boundary name>_comp <num> - Overrides the boundary components

3757:   Level: developer

3759: .seealso: `PetscDS`, `PetscWeakForm`, `DMBoundaryConditionType`, `PetscDSAddBoundary()`, `DMLabel`
3760: @*/
3761: PetscErrorCode PetscDSGetBoundary(PetscDS ds, PetscInt bd, PetscWeakForm *wf, DMBoundaryConditionType *type, const char *name[], DMLabel *label, PetscInt *Nv, const PetscInt *values[], PetscInt *field, PetscInt *Nc, const PetscInt *comps[], void (**func)(void), void (**func_t)(void), void **ctx)
3762: {
3763:   DSBoundary b = ds->boundary;
3764:   PetscInt   n = 0;

3766:   PetscFunctionBegin;
3768:   while (b) {
3769:     if (n == bd) break;
3770:     b = b->next;
3771:     ++n;
3772:   }
3773:   PetscCheck(b, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Boundary %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", bd, n);
3774:   if (wf) {
3776:     *wf = b->wf;
3777:   }
3778:   if (type) {
3780:     *type = b->type;
3781:   }
3782:   if (name) {
3784:     *name = b->name;
3785:   }
3786:   if (label) {
3788:     *label = b->label;
3789:   }
3790:   if (Nv) {
3792:     *Nv = b->Nv;
3793:   }
3794:   if (values) {
3796:     *values = b->values;
3797:   }
3798:   if (field) {
3800:     *field = b->field;
3801:   }
3802:   if (Nc) {
3804:     *Nc = b->Nc;
3805:   }
3806:   if (comps) {
3808:     *comps = b->comps;
3809:   }
3810:   if (func) {
3812:     *func = b->func;
3813:   }
3814:   if (func_t) {
3816:     *func_t = b->func_t;
3817:   }
3818:   if (ctx) {
3820:     *ctx = b->ctx;
3821:   }
3822:   PetscFunctionReturn(PETSC_SUCCESS);
3823: }

3825: static PetscErrorCode DSBoundaryDuplicate_Internal(DSBoundary b, DSBoundary *bNew)
3826: {
3827:   PetscFunctionBegin;
3828:   PetscCall(PetscNew(bNew));
3829:   PetscCall(PetscWeakFormCreate(PETSC_COMM_SELF, &(*bNew)->wf));
3830:   PetscCall(PetscWeakFormCopy(b->wf, (*bNew)->wf));
3831:   PetscCall(PetscStrallocpy(b->name, (char **)&((*bNew)->name)));
3832:   PetscCall(PetscStrallocpy(b->lname, (char **)&((*bNew)->lname)));
3833:   (*bNew)->type  = b->type;
3834:   (*bNew)->label = b->label;
3835:   (*bNew)->Nv    = b->Nv;
3836:   PetscCall(PetscMalloc1(b->Nv, &(*bNew)->values));
3837:   PetscCall(PetscArraycpy((*bNew)->values, b->values, b->Nv));
3838:   (*bNew)->field = b->field;
3839:   (*bNew)->Nc    = b->Nc;
3840:   PetscCall(PetscMalloc1(b->Nc, &(*bNew)->comps));
3841:   PetscCall(PetscArraycpy((*bNew)->comps, b->comps, b->Nc));
3842:   (*bNew)->func   = b->func;
3843:   (*bNew)->func_t = b->func_t;
3844:   (*bNew)->ctx    = b->ctx;
3845:   PetscFunctionReturn(PETSC_SUCCESS);
3846: }

3848: /*@
3849:   PetscDSCopyBoundary - Copy all boundary condition objects to the new problem

3851:   Not Collective

3853:   Input Parameters:
3854: + ds        - The source `PetscDS` object
3855: . numFields - The number of selected fields, or `PETSC_DEFAULT` for all fields
3856: - fields    - The selected fields, or NULL for all fields

3858:   Output Parameter:
3859: . newds     - The target `PetscDS`, now with a copy of the boundary conditions

3861:   Level: intermediate

3863: .seealso: `PetscDS`, `DMBoundary`, `PetscDSCopyEquations()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3864: @*/
3865: PetscErrorCode PetscDSCopyBoundary(PetscDS ds, PetscInt numFields, const PetscInt fields[], PetscDS newds)
3866: {
3867:   DSBoundary b, *lastnext;

3869:   PetscFunctionBegin;
3872:   if (ds == newds) PetscFunctionReturn(PETSC_SUCCESS);
3873:   PetscCall(PetscDSDestroyBoundary(newds));
3874:   lastnext = &(newds->boundary);
3875:   for (b = ds->boundary; b; b = b->next) {
3876:     DSBoundary bNew;
3877:     PetscInt   fieldNew = -1;

3879:     if (numFields > 0 && fields) {
3880:       PetscInt f;

3882:       for (f = 0; f < numFields; ++f)
3883:         if (b->field == fields[f]) break;
3884:       if (f == numFields) continue;
3885:       fieldNew = f;
3886:     }
3887:     PetscCall(DSBoundaryDuplicate_Internal(b, &bNew));
3888:     bNew->field = fieldNew < 0 ? b->field : fieldNew;
3889:     *lastnext   = bNew;
3890:     lastnext    = &(bNew->next);
3891:   }
3892:   PetscFunctionReturn(PETSC_SUCCESS);
3893: }

3895: /*@
3896:   PetscDSDestroyBoundary - Remove all `DMBoundary` objects from the `PetscDS`

3898:   Not Collective

3900:   Input Parameter:
3901: . ds - The `PetscDS` object

3903:   Level: intermediate

3905: .seealso: `PetscDS`, `DMBoundary`, `PetscDSCopyBoundary()`, `PetscDSCopyEquations()`
3906: @*/
3907: PetscErrorCode PetscDSDestroyBoundary(PetscDS ds)
3908: {
3909:   DSBoundary next = ds->boundary;

3911:   PetscFunctionBegin;
3912:   while (next) {
3913:     DSBoundary b = next;

3915:     next = b->next;
3916:     PetscCall(PetscWeakFormDestroy(&b->wf));
3917:     PetscCall(PetscFree(b->name));
3918:     PetscCall(PetscFree(b->lname));
3919:     PetscCall(PetscFree(b->values));
3920:     PetscCall(PetscFree(b->comps));
3921:     PetscCall(PetscFree(b));
3922:   }
3923:   PetscFunctionReturn(PETSC_SUCCESS);
3924: }

3926: /*@
3927:   PetscDSSelectDiscretizations - Copy discretizations to the new problem with different field layout

3929:   Not Collective

3931:   Input Parameters:
3932: + prob - The `PetscDS` object
3933: . numFields - Number of new fields
3934: - fields - Old field number for each new field

3936:   Output Parameter:
3937: . newprob - The `PetscDS` copy

3939:   Level: intermediate

3941: .seealso: `PetscDS`, `PetscDSSelectEquations()`, `PetscDSCopyBoundary()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3942: @*/
3943: PetscErrorCode PetscDSSelectDiscretizations(PetscDS prob, PetscInt numFields, const PetscInt fields[], PetscDS newprob)
3944: {
3945:   PetscInt Nf, Nfn, fn;

3947:   PetscFunctionBegin;
3951:   PetscCall(PetscDSGetNumFields(prob, &Nf));
3952:   PetscCall(PetscDSGetNumFields(newprob, &Nfn));
3953:   numFields = numFields < 0 ? Nf : numFields;
3954:   for (fn = 0; fn < numFields; ++fn) {
3955:     const PetscInt f = fields ? fields[fn] : fn;
3956:     PetscObject    disc;

3958:     if (f >= Nf) continue;
3959:     PetscCall(PetscDSGetDiscretization(prob, f, &disc));
3960:     PetscCall(PetscDSSetDiscretization(newprob, fn, disc));
3961:   }
3962:   PetscFunctionReturn(PETSC_SUCCESS);
3963: }

3965: /*@
3966:   PetscDSSelectEquations - Copy pointwise function pointers to the new problem with different field layout

3968:   Not Collective

3970:   Input Parameters:
3971: + prob - The `PetscDS` object
3972: . numFields - Number of new fields
3973: - fields - Old field number for each new field

3975:   Output Parameter:
3976: . newprob - The `PetscDS` copy

3978:   Level: intermediate

3980: .seealso: `PetscDS`, `PetscDSSelectDiscretizations()`, `PetscDSCopyBoundary()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
3981: @*/
3982: PetscErrorCode PetscDSSelectEquations(PetscDS prob, PetscInt numFields, const PetscInt fields[], PetscDS newprob)
3983: {
3984:   PetscInt Nf, Nfn, fn, gn;

3986:   PetscFunctionBegin;
3990:   PetscCall(PetscDSGetNumFields(prob, &Nf));
3991:   PetscCall(PetscDSGetNumFields(newprob, &Nfn));
3992:   PetscCheck(numFields <= Nfn, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_SIZ, "Number of fields %" PetscInt_FMT " to transfer must not be greater then the total number of fields %" PetscInt_FMT, numFields, Nfn);
3993:   for (fn = 0; fn < numFields; ++fn) {
3994:     const PetscInt   f = fields ? fields[fn] : fn;
3995:     PetscPointFunc   obj;
3996:     PetscPointFunc   f0, f1;
3997:     PetscBdPointFunc f0Bd, f1Bd;
3998:     PetscRiemannFunc r;

4000:     if (f >= Nf) continue;
4001:     PetscCall(PetscDSGetObjective(prob, f, &obj));
4002:     PetscCall(PetscDSGetResidual(prob, f, &f0, &f1));
4003:     PetscCall(PetscDSGetBdResidual(prob, f, &f0Bd, &f1Bd));
4004:     PetscCall(PetscDSGetRiemannSolver(prob, f, &r));
4005:     PetscCall(PetscDSSetObjective(newprob, fn, obj));
4006:     PetscCall(PetscDSSetResidual(newprob, fn, f0, f1));
4007:     PetscCall(PetscDSSetBdResidual(newprob, fn, f0Bd, f1Bd));
4008:     PetscCall(PetscDSSetRiemannSolver(newprob, fn, r));
4009:     for (gn = 0; gn < numFields; ++gn) {
4010:       const PetscInt  g = fields ? fields[gn] : gn;
4011:       PetscPointJac   g0, g1, g2, g3;
4012:       PetscPointJac   g0p, g1p, g2p, g3p;
4013:       PetscBdPointJac g0Bd, g1Bd, g2Bd, g3Bd;

4015:       if (g >= Nf) continue;
4016:       PetscCall(PetscDSGetJacobian(prob, f, g, &g0, &g1, &g2, &g3));
4017:       PetscCall(PetscDSGetJacobianPreconditioner(prob, f, g, &g0p, &g1p, &g2p, &g3p));
4018:       PetscCall(PetscDSGetBdJacobian(prob, f, g, &g0Bd, &g1Bd, &g2Bd, &g3Bd));
4019:       PetscCall(PetscDSSetJacobian(newprob, fn, gn, g0, g1, g2, g3));
4020:       PetscCall(PetscDSSetJacobianPreconditioner(newprob, fn, gn, g0p, g1p, g2p, g3p));
4021:       PetscCall(PetscDSSetBdJacobian(newprob, fn, gn, g0Bd, g1Bd, g2Bd, g3Bd));
4022:     }
4023:   }
4024:   PetscFunctionReturn(PETSC_SUCCESS);
4025: }

4027: /*@
4028:   PetscDSCopyEquations - Copy all pointwise function pointers to another `PetscDS`

4030:   Not Collective

4032:   Input Parameter:
4033: . prob - The `PetscDS` object

4035:   Output Parameter:
4036: . newprob - The `PetscDS` copy

4038:   Level: intermediate

4040: .seealso: `PetscDS`, `PetscDSCopyBoundary()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
4041: @*/
4042: PetscErrorCode PetscDSCopyEquations(PetscDS prob, PetscDS newprob)
4043: {
4044:   PetscWeakForm wf, newwf;
4045:   PetscInt      Nf, Ng;

4047:   PetscFunctionBegin;
4050:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4051:   PetscCall(PetscDSGetNumFields(newprob, &Ng));
4052:   PetscCheck(Nf == Ng, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_SIZ, "Number of fields must match %" PetscInt_FMT " != %" PetscInt_FMT, Nf, Ng);
4053:   PetscCall(PetscDSGetWeakForm(prob, &wf));
4054:   PetscCall(PetscDSGetWeakForm(newprob, &newwf));
4055:   PetscCall(PetscWeakFormCopy(wf, newwf));
4056:   PetscFunctionReturn(PETSC_SUCCESS);
4057: }

4059: /*@
4060:   PetscDSCopyConstants - Copy all constants to another `PetscDS`

4062:   Not Collective

4064:   Input Parameter:
4065: . prob - The `PetscDS` object

4067:   Output Parameter:
4068: . newprob - The `PetscDS` copy

4070:   Level: intermediate

4072: .seealso: `PetscDS`, `PetscDSCopyBoundary()`, `PetscDSCopyEquations()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
4073: @*/
4074: PetscErrorCode PetscDSCopyConstants(PetscDS prob, PetscDS newprob)
4075: {
4076:   PetscInt           Nc;
4077:   const PetscScalar *constants;

4079:   PetscFunctionBegin;
4082:   PetscCall(PetscDSGetConstants(prob, &Nc, &constants));
4083:   PetscCall(PetscDSSetConstants(newprob, Nc, (PetscScalar *)constants));
4084:   PetscFunctionReturn(PETSC_SUCCESS);
4085: }

4087: /*@
4088:   PetscDSCopyExactSolutions - Copy all exact solutions to another `PetscDS`

4090:   Not Collective

4092:   Input Parameter:
4093: . ds - The `PetscDS` object

4095:   Output Parameter:
4096: . newds - The `PetscDS` copy

4098:   Level: intermediate

4100: .seealso: `PetscDS`, `PetscDSCopyBoundary()`, `PetscDSCopyEquations()`, `PetscDSSetResidual()`, `PetscDSSetJacobian()`, `PetscDSSetRiemannSolver()`, `PetscDSSetBdResidual()`, `PetscDSSetBdJacobian()`, `PetscDSCreate()`
4101: @*/
4102: PetscErrorCode PetscDSCopyExactSolutions(PetscDS ds, PetscDS newds)
4103: {
4104:   PetscSimplePointFunc sol;
4105:   void                *ctx;
4106:   PetscInt             Nf, f;

4108:   PetscFunctionBegin;
4111:   PetscCall(PetscDSGetNumFields(ds, &Nf));
4112:   for (f = 0; f < Nf; ++f) {
4113:     PetscCall(PetscDSGetExactSolution(ds, f, &sol, &ctx));
4114:     PetscCall(PetscDSSetExactSolution(newds, f, sol, ctx));
4115:     PetscCall(PetscDSGetExactSolutionTimeDerivative(ds, f, &sol, &ctx));
4116:     PetscCall(PetscDSSetExactSolutionTimeDerivative(newds, f, sol, ctx));
4117:   }
4118:   PetscFunctionReturn(PETSC_SUCCESS);
4119: }

4121: PetscErrorCode PetscDSCopy(PetscDS ds, DM dmNew, PetscDS dsNew)
4122: {
4123:   DSBoundary b;
4124:   PetscInt   cdim, Nf, f, d;
4125:   PetscBool  isCohesive;
4126:   void      *ctx;

4128:   PetscFunctionBegin;
4129:   PetscCall(PetscDSCopyConstants(ds, dsNew));
4130:   PetscCall(PetscDSCopyExactSolutions(ds, dsNew));
4131:   PetscCall(PetscDSSelectDiscretizations(ds, PETSC_DETERMINE, NULL, dsNew));
4132:   PetscCall(PetscDSCopyEquations(ds, dsNew));
4133:   PetscCall(PetscDSGetNumFields(ds, &Nf));
4134:   for (f = 0; f < Nf; ++f) {
4135:     PetscCall(PetscDSGetContext(ds, f, &ctx));
4136:     PetscCall(PetscDSSetContext(dsNew, f, ctx));
4137:     PetscCall(PetscDSGetCohesive(ds, f, &isCohesive));
4138:     PetscCall(PetscDSSetCohesive(dsNew, f, isCohesive));
4139:     PetscCall(PetscDSGetJetDegree(ds, f, &d));
4140:     PetscCall(PetscDSSetJetDegree(dsNew, f, d));
4141:   }
4142:   if (Nf) {
4143:     PetscCall(PetscDSGetCoordinateDimension(ds, &cdim));
4144:     PetscCall(PetscDSSetCoordinateDimension(dsNew, cdim));
4145:   }
4146:   PetscCall(PetscDSCopyBoundary(ds, PETSC_DETERMINE, NULL, dsNew));
4147:   for (b = dsNew->boundary; b; b = b->next) {
4148:     PetscCall(DMGetLabel(dmNew, b->lname, &b->label));
4149:     /* Do not check if label exists here, since p4est calls this for the reference tree which does not have the labels */
4150:     //PetscCheck(b->label,PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Label %s missing in new DM", name);
4151:   }
4152:   PetscFunctionReturn(PETSC_SUCCESS);
4153: }

4155: PetscErrorCode PetscDSGetHeightSubspace(PetscDS prob, PetscInt height, PetscDS *subprob)
4156: {
4157:   PetscInt dim, Nf, f;

4159:   PetscFunctionBegin;
4162:   if (height == 0) {
4163:     *subprob = prob;
4164:     PetscFunctionReturn(PETSC_SUCCESS);
4165:   }
4166:   PetscCall(PetscDSGetNumFields(prob, &Nf));
4167:   PetscCall(PetscDSGetSpatialDimension(prob, &dim));
4168:   PetscCheck(height <= dim, PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_OUTOFRANGE, "DS can only handle height in [0, %" PetscInt_FMT "], not %" PetscInt_FMT, dim, height);
4169:   if (!prob->subprobs) PetscCall(PetscCalloc1(dim, &prob->subprobs));
4170:   if (!prob->subprobs[height - 1]) {
4171:     PetscInt cdim;

4173:     PetscCall(PetscDSCreate(PetscObjectComm((PetscObject)prob), &prob->subprobs[height - 1]));
4174:     PetscCall(PetscDSGetCoordinateDimension(prob, &cdim));
4175:     PetscCall(PetscDSSetCoordinateDimension(prob->subprobs[height - 1], cdim));
4176:     for (f = 0; f < Nf; ++f) {
4177:       PetscFE      subfe;
4178:       PetscObject  obj;
4179:       PetscClassId id;

4181:       PetscCall(PetscDSGetDiscretization(prob, f, &obj));
4182:       PetscCall(PetscObjectGetClassId(obj, &id));
4183:       if (id == PETSCFE_CLASSID) PetscCall(PetscFEGetHeightSubspace((PetscFE)obj, height, &subfe));
4184:       else SETERRQ(PetscObjectComm((PetscObject)prob), PETSC_ERR_ARG_WRONG, "Unsupported discretization type for field %" PetscInt_FMT, f);
4185:       PetscCall(PetscDSSetDiscretization(prob->subprobs[height - 1], f, (PetscObject)subfe));
4186:     }
4187:   }
4188:   *subprob = prob->subprobs[height - 1];
4189:   PetscFunctionReturn(PETSC_SUCCESS);
4190: }

4192: PetscErrorCode PetscDSPermuteQuadPoint(PetscDS ds, PetscInt ornt, PetscInt field, PetscInt q, PetscInt *qperm)
4193: {
4194:   IS              permIS;
4195:   PetscQuadrature quad;
4196:   DMPolytopeType  ct;
4197:   const PetscInt *perm;
4198:   PetscInt        Na, Nq;

4200:   PetscFunctionBeginHot;
4201:   PetscCall(PetscFEGetQuadrature((PetscFE)ds->disc[field], &quad));
4202:   PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
4203:   PetscCall(PetscQuadratureGetCellType(quad, &ct));
4204:   PetscCheck(q >= 0 && q < Nq, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Quadrature point %" PetscInt_FMT " is not in [0, %" PetscInt_FMT ")", q, Nq);
4205:   Na = DMPolytopeTypeGetNumArrangments(ct) / 2;
4206:   PetscCheck(ornt >= -Na && ornt < Na, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Orientation %" PetscInt_FMT " of %s is not in [%" PetscInt_FMT ", %" PetscInt_FMT ")", ornt, DMPolytopeTypes[ct], -Na, Na);
4207:   if (!ds->quadPerm[(PetscInt)ct]) PetscCall(PetscQuadratureComputePermutations(quad, NULL, &ds->quadPerm[(PetscInt)ct]));
4208:   permIS = ds->quadPerm[(PetscInt)ct][ornt + Na];
4209:   PetscCall(ISGetIndices(permIS, &perm));
4210:   *qperm = perm[q];
4211:   PetscCall(ISRestoreIndices(permIS, &perm));
4212:   PetscFunctionReturn(PETSC_SUCCESS);
4213: }

4215: PetscErrorCode PetscDSGetDiscType_Internal(PetscDS ds, PetscInt f, PetscDiscType *disctype)
4216: {
4217:   PetscObject  obj;
4218:   PetscClassId id;
4219:   PetscInt     Nf;

4221:   PetscFunctionBegin;
4224:   *disctype = PETSC_DISC_NONE;
4225:   PetscCall(PetscDSGetNumFields(ds, &Nf));
4226:   PetscCheck(f < Nf, PetscObjectComm((PetscObject)ds), PETSC_ERR_ARG_SIZ, "Field %" PetscInt_FMT " must be in [0, %" PetscInt_FMT ")", f, Nf);
4227:   PetscCall(PetscDSGetDiscretization(ds, f, &obj));
4228:   if (obj) {
4229:     PetscCall(PetscObjectGetClassId(obj, &id));
4230:     if (id == PETSCFE_CLASSID) *disctype = PETSC_DISC_FE;
4231:     else *disctype = PETSC_DISC_FV;
4232:   }
4233:   PetscFunctionReturn(PETSC_SUCCESS);
4234: }

4236: static PetscErrorCode PetscDSDestroy_Basic(PetscDS ds)
4237: {
4238:   PetscFunctionBegin;
4239:   PetscCall(PetscFree(ds->data));
4240:   PetscFunctionReturn(PETSC_SUCCESS);
4241: }

4243: static PetscErrorCode PetscDSInitialize_Basic(PetscDS ds)
4244: {
4245:   PetscFunctionBegin;
4246:   ds->ops->setfromoptions = NULL;
4247:   ds->ops->setup          = NULL;
4248:   ds->ops->view           = NULL;
4249:   ds->ops->destroy        = PetscDSDestroy_Basic;
4250:   PetscFunctionReturn(PETSC_SUCCESS);
4251: }

4253: /*MC
4254:   PETSCDSBASIC = "basic" - A discrete system with pointwise residual and boundary residual functions

4256:   Level: intermediate

4258: .seealso: `PetscDSType`, `PetscDSCreate()`, `PetscDSSetType()`
4259: M*/

4261: PETSC_EXTERN PetscErrorCode PetscDSCreate_Basic(PetscDS ds)
4262: {
4263:   PetscDS_Basic *b;

4265:   PetscFunctionBegin;
4267:   PetscCall(PetscNew(&b));
4268:   ds->data = b;

4270:   PetscCall(PetscDSInitialize_Basic(ds));
4271:   PetscFunctionReturn(PETSC_SUCCESS);
4272: }