Actual source code: baijfact7.c
2: /*
3: Factorization code for BAIJ format.
4: */
5: #include <../src/mat/impls/baij/seq/baij.h>
6: #include <petsc/private/kernels/blockinvert.h>
8: /*
9: Version for when blocks are 6 by 6
10: */
11: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_6_inplace(Mat C, Mat A, const MatFactorInfo *info)
12: {
13: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
14: IS isrow = b->row, isicol = b->icol;
15: const PetscInt *ajtmpold, *ajtmp, *diag_offset = b->diag, *r, *ic, *bi = b->i, *bj = b->j, *ai = a->i, *aj = a->j, *pj;
16: PetscInt nz, row, i, j, n = a->mbs, idx;
17: MatScalar *pv, *v, *rtmp, *pc, *w, *x;
18: MatScalar p1, p2, p3, p4, m1, m2, m3, m4, m5, m6, m7, m8, m9, x1, x2, x3, x4;
19: MatScalar p5, p6, p7, p8, p9, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16;
20: MatScalar x17, x18, x19, x20, x21, x22, x23, x24, x25, p10, p11, p12, p13, p14;
21: MatScalar p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, m10, m11, m12;
22: MatScalar m13, m14, m15, m16, m17, m18, m19, m20, m21, m22, m23, m24, m25;
23: MatScalar p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36;
24: MatScalar x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36;
25: MatScalar m26, m27, m28, m29, m30, m31, m32, m33, m34, m35, m36;
26: MatScalar *ba = b->a, *aa = a->a;
27: PetscReal shift = info->shiftamount;
28: PetscBool allowzeropivot, zeropivotdetected;
30: PetscFunctionBegin;
31: allowzeropivot = PetscNot(A->erroriffailure);
32: PetscCall(ISGetIndices(isrow, &r));
33: PetscCall(ISGetIndices(isicol, &ic));
34: PetscCall(PetscMalloc1(36 * (n + 1), &rtmp));
36: for (i = 0; i < n; i++) {
37: nz = bi[i + 1] - bi[i];
38: ajtmp = bj + bi[i];
39: for (j = 0; j < nz; j++) {
40: x = rtmp + 36 * ajtmp[j];
41: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
42: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
43: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
44: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
45: x[34] = x[35] = 0.0;
46: }
47: /* load in initial (unfactored row) */
48: idx = r[i];
49: nz = ai[idx + 1] - ai[idx];
50: ajtmpold = aj + ai[idx];
51: v = aa + 36 * ai[idx];
52: for (j = 0; j < nz; j++) {
53: x = rtmp + 36 * ic[ajtmpold[j]];
54: x[0] = v[0];
55: x[1] = v[1];
56: x[2] = v[2];
57: x[3] = v[3];
58: x[4] = v[4];
59: x[5] = v[5];
60: x[6] = v[6];
61: x[7] = v[7];
62: x[8] = v[8];
63: x[9] = v[9];
64: x[10] = v[10];
65: x[11] = v[11];
66: x[12] = v[12];
67: x[13] = v[13];
68: x[14] = v[14];
69: x[15] = v[15];
70: x[16] = v[16];
71: x[17] = v[17];
72: x[18] = v[18];
73: x[19] = v[19];
74: x[20] = v[20];
75: x[21] = v[21];
76: x[22] = v[22];
77: x[23] = v[23];
78: x[24] = v[24];
79: x[25] = v[25];
80: x[26] = v[26];
81: x[27] = v[27];
82: x[28] = v[28];
83: x[29] = v[29];
84: x[30] = v[30];
85: x[31] = v[31];
86: x[32] = v[32];
87: x[33] = v[33];
88: x[34] = v[34];
89: x[35] = v[35];
90: v += 36;
91: }
92: row = *ajtmp++;
93: while (row < i) {
94: pc = rtmp + 36 * row;
95: p1 = pc[0];
96: p2 = pc[1];
97: p3 = pc[2];
98: p4 = pc[3];
99: p5 = pc[4];
100: p6 = pc[5];
101: p7 = pc[6];
102: p8 = pc[7];
103: p9 = pc[8];
104: p10 = pc[9];
105: p11 = pc[10];
106: p12 = pc[11];
107: p13 = pc[12];
108: p14 = pc[13];
109: p15 = pc[14];
110: p16 = pc[15];
111: p17 = pc[16];
112: p18 = pc[17];
113: p19 = pc[18];
114: p20 = pc[19];
115: p21 = pc[20];
116: p22 = pc[21];
117: p23 = pc[22];
118: p24 = pc[23];
119: p25 = pc[24];
120: p26 = pc[25];
121: p27 = pc[26];
122: p28 = pc[27];
123: p29 = pc[28];
124: p30 = pc[29];
125: p31 = pc[30];
126: p32 = pc[31];
127: p33 = pc[32];
128: p34 = pc[33];
129: p35 = pc[34];
130: p36 = pc[35];
131: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 || p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 || p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 || p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 || p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 || p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0) {
132: pv = ba + 36 * diag_offset[row];
133: pj = bj + diag_offset[row] + 1;
134: x1 = pv[0];
135: x2 = pv[1];
136: x3 = pv[2];
137: x4 = pv[3];
138: x5 = pv[4];
139: x6 = pv[5];
140: x7 = pv[6];
141: x8 = pv[7];
142: x9 = pv[8];
143: x10 = pv[9];
144: x11 = pv[10];
145: x12 = pv[11];
146: x13 = pv[12];
147: x14 = pv[13];
148: x15 = pv[14];
149: x16 = pv[15];
150: x17 = pv[16];
151: x18 = pv[17];
152: x19 = pv[18];
153: x20 = pv[19];
154: x21 = pv[20];
155: x22 = pv[21];
156: x23 = pv[22];
157: x24 = pv[23];
158: x25 = pv[24];
159: x26 = pv[25];
160: x27 = pv[26];
161: x28 = pv[27];
162: x29 = pv[28];
163: x30 = pv[29];
164: x31 = pv[30];
165: x32 = pv[31];
166: x33 = pv[32];
167: x34 = pv[33];
168: x35 = pv[34];
169: x36 = pv[35];
170: pc[0] = m1 = p1 * x1 + p7 * x2 + p13 * x3 + p19 * x4 + p25 * x5 + p31 * x6;
171: pc[1] = m2 = p2 * x1 + p8 * x2 + p14 * x3 + p20 * x4 + p26 * x5 + p32 * x6;
172: pc[2] = m3 = p3 * x1 + p9 * x2 + p15 * x3 + p21 * x4 + p27 * x5 + p33 * x6;
173: pc[3] = m4 = p4 * x1 + p10 * x2 + p16 * x3 + p22 * x4 + p28 * x5 + p34 * x6;
174: pc[4] = m5 = p5 * x1 + p11 * x2 + p17 * x3 + p23 * x4 + p29 * x5 + p35 * x6;
175: pc[5] = m6 = p6 * x1 + p12 * x2 + p18 * x3 + p24 * x4 + p30 * x5 + p36 * x6;
177: pc[6] = m7 = p1 * x7 + p7 * x8 + p13 * x9 + p19 * x10 + p25 * x11 + p31 * x12;
178: pc[7] = m8 = p2 * x7 + p8 * x8 + p14 * x9 + p20 * x10 + p26 * x11 + p32 * x12;
179: pc[8] = m9 = p3 * x7 + p9 * x8 + p15 * x9 + p21 * x10 + p27 * x11 + p33 * x12;
180: pc[9] = m10 = p4 * x7 + p10 * x8 + p16 * x9 + p22 * x10 + p28 * x11 + p34 * x12;
181: pc[10] = m11 = p5 * x7 + p11 * x8 + p17 * x9 + p23 * x10 + p29 * x11 + p35 * x12;
182: pc[11] = m12 = p6 * x7 + p12 * x8 + p18 * x9 + p24 * x10 + p30 * x11 + p36 * x12;
184: pc[12] = m13 = p1 * x13 + p7 * x14 + p13 * x15 + p19 * x16 + p25 * x17 + p31 * x18;
185: pc[13] = m14 = p2 * x13 + p8 * x14 + p14 * x15 + p20 * x16 + p26 * x17 + p32 * x18;
186: pc[14] = m15 = p3 * x13 + p9 * x14 + p15 * x15 + p21 * x16 + p27 * x17 + p33 * x18;
187: pc[15] = m16 = p4 * x13 + p10 * x14 + p16 * x15 + p22 * x16 + p28 * x17 + p34 * x18;
188: pc[16] = m17 = p5 * x13 + p11 * x14 + p17 * x15 + p23 * x16 + p29 * x17 + p35 * x18;
189: pc[17] = m18 = p6 * x13 + p12 * x14 + p18 * x15 + p24 * x16 + p30 * x17 + p36 * x18;
191: pc[18] = m19 = p1 * x19 + p7 * x20 + p13 * x21 + p19 * x22 + p25 * x23 + p31 * x24;
192: pc[19] = m20 = p2 * x19 + p8 * x20 + p14 * x21 + p20 * x22 + p26 * x23 + p32 * x24;
193: pc[20] = m21 = p3 * x19 + p9 * x20 + p15 * x21 + p21 * x22 + p27 * x23 + p33 * x24;
194: pc[21] = m22 = p4 * x19 + p10 * x20 + p16 * x21 + p22 * x22 + p28 * x23 + p34 * x24;
195: pc[22] = m23 = p5 * x19 + p11 * x20 + p17 * x21 + p23 * x22 + p29 * x23 + p35 * x24;
196: pc[23] = m24 = p6 * x19 + p12 * x20 + p18 * x21 + p24 * x22 + p30 * x23 + p36 * x24;
198: pc[24] = m25 = p1 * x25 + p7 * x26 + p13 * x27 + p19 * x28 + p25 * x29 + p31 * x30;
199: pc[25] = m26 = p2 * x25 + p8 * x26 + p14 * x27 + p20 * x28 + p26 * x29 + p32 * x30;
200: pc[26] = m27 = p3 * x25 + p9 * x26 + p15 * x27 + p21 * x28 + p27 * x29 + p33 * x30;
201: pc[27] = m28 = p4 * x25 + p10 * x26 + p16 * x27 + p22 * x28 + p28 * x29 + p34 * x30;
202: pc[28] = m29 = p5 * x25 + p11 * x26 + p17 * x27 + p23 * x28 + p29 * x29 + p35 * x30;
203: pc[29] = m30 = p6 * x25 + p12 * x26 + p18 * x27 + p24 * x28 + p30 * x29 + p36 * x30;
205: pc[30] = m31 = p1 * x31 + p7 * x32 + p13 * x33 + p19 * x34 + p25 * x35 + p31 * x36;
206: pc[31] = m32 = p2 * x31 + p8 * x32 + p14 * x33 + p20 * x34 + p26 * x35 + p32 * x36;
207: pc[32] = m33 = p3 * x31 + p9 * x32 + p15 * x33 + p21 * x34 + p27 * x35 + p33 * x36;
208: pc[33] = m34 = p4 * x31 + p10 * x32 + p16 * x33 + p22 * x34 + p28 * x35 + p34 * x36;
209: pc[34] = m35 = p5 * x31 + p11 * x32 + p17 * x33 + p23 * x34 + p29 * x35 + p35 * x36;
210: pc[35] = m36 = p6 * x31 + p12 * x32 + p18 * x33 + p24 * x34 + p30 * x35 + p36 * x36;
212: nz = bi[row + 1] - diag_offset[row] - 1;
213: pv += 36;
214: for (j = 0; j < nz; j++) {
215: x1 = pv[0];
216: x2 = pv[1];
217: x3 = pv[2];
218: x4 = pv[3];
219: x5 = pv[4];
220: x6 = pv[5];
221: x7 = pv[6];
222: x8 = pv[7];
223: x9 = pv[8];
224: x10 = pv[9];
225: x11 = pv[10];
226: x12 = pv[11];
227: x13 = pv[12];
228: x14 = pv[13];
229: x15 = pv[14];
230: x16 = pv[15];
231: x17 = pv[16];
232: x18 = pv[17];
233: x19 = pv[18];
234: x20 = pv[19];
235: x21 = pv[20];
236: x22 = pv[21];
237: x23 = pv[22];
238: x24 = pv[23];
239: x25 = pv[24];
240: x26 = pv[25];
241: x27 = pv[26];
242: x28 = pv[27];
243: x29 = pv[28];
244: x30 = pv[29];
245: x31 = pv[30];
246: x32 = pv[31];
247: x33 = pv[32];
248: x34 = pv[33];
249: x35 = pv[34];
250: x36 = pv[35];
251: x = rtmp + 36 * pj[j];
252: x[0] -= m1 * x1 + m7 * x2 + m13 * x3 + m19 * x4 + m25 * x5 + m31 * x6;
253: x[1] -= m2 * x1 + m8 * x2 + m14 * x3 + m20 * x4 + m26 * x5 + m32 * x6;
254: x[2] -= m3 * x1 + m9 * x2 + m15 * x3 + m21 * x4 + m27 * x5 + m33 * x6;
255: x[3] -= m4 * x1 + m10 * x2 + m16 * x3 + m22 * x4 + m28 * x5 + m34 * x6;
256: x[4] -= m5 * x1 + m11 * x2 + m17 * x3 + m23 * x4 + m29 * x5 + m35 * x6;
257: x[5] -= m6 * x1 + m12 * x2 + m18 * x3 + m24 * x4 + m30 * x5 + m36 * x6;
259: x[6] -= m1 * x7 + m7 * x8 + m13 * x9 + m19 * x10 + m25 * x11 + m31 * x12;
260: x[7] -= m2 * x7 + m8 * x8 + m14 * x9 + m20 * x10 + m26 * x11 + m32 * x12;
261: x[8] -= m3 * x7 + m9 * x8 + m15 * x9 + m21 * x10 + m27 * x11 + m33 * x12;
262: x[9] -= m4 * x7 + m10 * x8 + m16 * x9 + m22 * x10 + m28 * x11 + m34 * x12;
263: x[10] -= m5 * x7 + m11 * x8 + m17 * x9 + m23 * x10 + m29 * x11 + m35 * x12;
264: x[11] -= m6 * x7 + m12 * x8 + m18 * x9 + m24 * x10 + m30 * x11 + m36 * x12;
266: x[12] -= m1 * x13 + m7 * x14 + m13 * x15 + m19 * x16 + m25 * x17 + m31 * x18;
267: x[13] -= m2 * x13 + m8 * x14 + m14 * x15 + m20 * x16 + m26 * x17 + m32 * x18;
268: x[14] -= m3 * x13 + m9 * x14 + m15 * x15 + m21 * x16 + m27 * x17 + m33 * x18;
269: x[15] -= m4 * x13 + m10 * x14 + m16 * x15 + m22 * x16 + m28 * x17 + m34 * x18;
270: x[16] -= m5 * x13 + m11 * x14 + m17 * x15 + m23 * x16 + m29 * x17 + m35 * x18;
271: x[17] -= m6 * x13 + m12 * x14 + m18 * x15 + m24 * x16 + m30 * x17 + m36 * x18;
273: x[18] -= m1 * x19 + m7 * x20 + m13 * x21 + m19 * x22 + m25 * x23 + m31 * x24;
274: x[19] -= m2 * x19 + m8 * x20 + m14 * x21 + m20 * x22 + m26 * x23 + m32 * x24;
275: x[20] -= m3 * x19 + m9 * x20 + m15 * x21 + m21 * x22 + m27 * x23 + m33 * x24;
276: x[21] -= m4 * x19 + m10 * x20 + m16 * x21 + m22 * x22 + m28 * x23 + m34 * x24;
277: x[22] -= m5 * x19 + m11 * x20 + m17 * x21 + m23 * x22 + m29 * x23 + m35 * x24;
278: x[23] -= m6 * x19 + m12 * x20 + m18 * x21 + m24 * x22 + m30 * x23 + m36 * x24;
280: x[24] -= m1 * x25 + m7 * x26 + m13 * x27 + m19 * x28 + m25 * x29 + m31 * x30;
281: x[25] -= m2 * x25 + m8 * x26 + m14 * x27 + m20 * x28 + m26 * x29 + m32 * x30;
282: x[26] -= m3 * x25 + m9 * x26 + m15 * x27 + m21 * x28 + m27 * x29 + m33 * x30;
283: x[27] -= m4 * x25 + m10 * x26 + m16 * x27 + m22 * x28 + m28 * x29 + m34 * x30;
284: x[28] -= m5 * x25 + m11 * x26 + m17 * x27 + m23 * x28 + m29 * x29 + m35 * x30;
285: x[29] -= m6 * x25 + m12 * x26 + m18 * x27 + m24 * x28 + m30 * x29 + m36 * x30;
287: x[30] -= m1 * x31 + m7 * x32 + m13 * x33 + m19 * x34 + m25 * x35 + m31 * x36;
288: x[31] -= m2 * x31 + m8 * x32 + m14 * x33 + m20 * x34 + m26 * x35 + m32 * x36;
289: x[32] -= m3 * x31 + m9 * x32 + m15 * x33 + m21 * x34 + m27 * x35 + m33 * x36;
290: x[33] -= m4 * x31 + m10 * x32 + m16 * x33 + m22 * x34 + m28 * x35 + m34 * x36;
291: x[34] -= m5 * x31 + m11 * x32 + m17 * x33 + m23 * x34 + m29 * x35 + m35 * x36;
292: x[35] -= m6 * x31 + m12 * x32 + m18 * x33 + m24 * x34 + m30 * x35 + m36 * x36;
294: pv += 36;
295: }
296: PetscCall(PetscLogFlops(432.0 * nz + 396.0));
297: }
298: row = *ajtmp++;
299: }
300: /* finished row so stick it into b->a */
301: pv = ba + 36 * bi[i];
302: pj = bj + bi[i];
303: nz = bi[i + 1] - bi[i];
304: for (j = 0; j < nz; j++) {
305: x = rtmp + 36 * pj[j];
306: pv[0] = x[0];
307: pv[1] = x[1];
308: pv[2] = x[2];
309: pv[3] = x[3];
310: pv[4] = x[4];
311: pv[5] = x[5];
312: pv[6] = x[6];
313: pv[7] = x[7];
314: pv[8] = x[8];
315: pv[9] = x[9];
316: pv[10] = x[10];
317: pv[11] = x[11];
318: pv[12] = x[12];
319: pv[13] = x[13];
320: pv[14] = x[14];
321: pv[15] = x[15];
322: pv[16] = x[16];
323: pv[17] = x[17];
324: pv[18] = x[18];
325: pv[19] = x[19];
326: pv[20] = x[20];
327: pv[21] = x[21];
328: pv[22] = x[22];
329: pv[23] = x[23];
330: pv[24] = x[24];
331: pv[25] = x[25];
332: pv[26] = x[26];
333: pv[27] = x[27];
334: pv[28] = x[28];
335: pv[29] = x[29];
336: pv[30] = x[30];
337: pv[31] = x[31];
338: pv[32] = x[32];
339: pv[33] = x[33];
340: pv[34] = x[34];
341: pv[35] = x[35];
342: pv += 36;
343: }
344: /* invert diagonal block */
345: w = ba + 36 * diag_offset[i];
346: PetscCall(PetscKernel_A_gets_inverse_A_6(w, shift, allowzeropivot, &zeropivotdetected));
347: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
348: }
350: PetscCall(PetscFree(rtmp));
351: PetscCall(ISRestoreIndices(isicol, &ic));
352: PetscCall(ISRestoreIndices(isrow, &r));
354: C->ops->solve = MatSolve_SeqBAIJ_6_inplace;
355: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_6_inplace;
356: C->assembled = PETSC_TRUE;
358: PetscCall(PetscLogFlops(1.333333333333 * 6 * 6 * 6 * b->mbs)); /* from inverting diagonal blocks */
359: PetscFunctionReturn(PETSC_SUCCESS);
360: }
362: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_6(Mat B, Mat A, const MatFactorInfo *info)
363: {
364: Mat C = B;
365: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
366: IS isrow = b->row, isicol = b->icol;
367: const PetscInt *r, *ic;
368: PetscInt i, j, k, nz, nzL, row;
369: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
370: const PetscInt *ajtmp, *bjtmp, *bdiag = b->diag, *pj, bs2 = a->bs2;
371: MatScalar *rtmp, *pc, *mwork, *v, *pv, *aa = a->a;
372: PetscInt flg;
373: PetscReal shift = info->shiftamount;
374: PetscBool allowzeropivot, zeropivotdetected;
376: PetscFunctionBegin;
377: allowzeropivot = PetscNot(A->erroriffailure);
378: PetscCall(ISGetIndices(isrow, &r));
379: PetscCall(ISGetIndices(isicol, &ic));
381: /* generate work space needed by the factorization */
382: PetscCall(PetscMalloc2(bs2 * n, &rtmp, bs2, &mwork));
383: PetscCall(PetscArrayzero(rtmp, bs2 * n));
385: for (i = 0; i < n; i++) {
386: /* zero rtmp */
387: /* L part */
388: nz = bi[i + 1] - bi[i];
389: bjtmp = bj + bi[i];
390: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
392: /* U part */
393: nz = bdiag[i] - bdiag[i + 1];
394: bjtmp = bj + bdiag[i + 1] + 1;
395: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
397: /* load in initial (unfactored row) */
398: nz = ai[r[i] + 1] - ai[r[i]];
399: ajtmp = aj + ai[r[i]];
400: v = aa + bs2 * ai[r[i]];
401: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(rtmp + bs2 * ic[ajtmp[j]], v + bs2 * j, bs2));
403: /* elimination */
404: bjtmp = bj + bi[i];
405: nzL = bi[i + 1] - bi[i];
406: for (k = 0; k < nzL; k++) {
407: row = bjtmp[k];
408: pc = rtmp + bs2 * row;
409: for (flg = 0, j = 0; j < bs2; j++) {
410: if (pc[j] != 0.0) {
411: flg = 1;
412: break;
413: }
414: }
415: if (flg) {
416: pv = b->a + bs2 * bdiag[row];
417: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
418: PetscCall(PetscKernel_A_gets_A_times_B_6(pc, pv, mwork));
420: pj = b->j + bdiag[row + 1] + 1; /* beginning of U(row,:) */
421: pv = b->a + bs2 * (bdiag[row + 1] + 1);
422: nz = bdiag[row] - bdiag[row + 1] - 1; /* num of entries inU(row,:), excluding diag */
423: for (j = 0; j < nz; j++) {
424: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
425: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
426: v = rtmp + bs2 * pj[j];
427: PetscCall(PetscKernel_A_gets_A_minus_B_times_C_6(v, pc, pv));
428: pv += bs2;
429: }
430: PetscCall(PetscLogFlops(432.0 * nz + 396)); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
431: }
432: }
434: /* finished row so stick it into b->a */
435: /* L part */
436: pv = b->a + bs2 * bi[i];
437: pj = b->j + bi[i];
438: nz = bi[i + 1] - bi[i];
439: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
441: /* Mark diagonal and invert diagonal for simpler triangular solves */
442: pv = b->a + bs2 * bdiag[i];
443: pj = b->j + bdiag[i];
444: PetscCall(PetscArraycpy(pv, rtmp + bs2 * pj[0], bs2));
445: PetscCall(PetscKernel_A_gets_inverse_A_6(pv, shift, allowzeropivot, &zeropivotdetected));
446: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
448: /* U part */
449: pv = b->a + bs2 * (bdiag[i + 1] + 1);
450: pj = b->j + bdiag[i + 1] + 1;
451: nz = bdiag[i] - bdiag[i + 1] - 1;
452: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
453: }
455: PetscCall(PetscFree2(rtmp, mwork));
456: PetscCall(ISRestoreIndices(isicol, &ic));
457: PetscCall(ISRestoreIndices(isrow, &r));
459: C->ops->solve = MatSolve_SeqBAIJ_6;
460: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_6;
461: C->assembled = PETSC_TRUE;
463: PetscCall(PetscLogFlops(1.333333333333 * 6 * 6 * 6 * n)); /* from inverting diagonal blocks */
464: PetscFunctionReturn(PETSC_SUCCESS);
465: }
467: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_6_NaturalOrdering_inplace(Mat C, Mat A, const MatFactorInfo *info)
468: {
469: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
470: PetscInt i, j, n = a->mbs, *bi = b->i, *bj = b->j;
471: PetscInt *ajtmpold, *ajtmp, nz, row;
472: PetscInt *diag_offset = b->diag, *ai = a->i, *aj = a->j, *pj;
473: MatScalar *pv, *v, *rtmp, *pc, *w, *x;
474: MatScalar x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
475: MatScalar x16, x17, x18, x19, x20, x21, x22, x23, x24, x25;
476: MatScalar p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15;
477: MatScalar p16, p17, p18, p19, p20, p21, p22, p23, p24, p25;
478: MatScalar m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15;
479: MatScalar m16, m17, m18, m19, m20, m21, m22, m23, m24, m25;
480: MatScalar p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36;
481: MatScalar x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36;
482: MatScalar m26, m27, m28, m29, m30, m31, m32, m33, m34, m35, m36;
483: MatScalar *ba = b->a, *aa = a->a;
484: PetscReal shift = info->shiftamount;
485: PetscBool allowzeropivot, zeropivotdetected;
487: PetscFunctionBegin;
488: allowzeropivot = PetscNot(A->erroriffailure);
489: PetscCall(PetscMalloc1(36 * (n + 1), &rtmp));
490: for (i = 0; i < n; i++) {
491: nz = bi[i + 1] - bi[i];
492: ajtmp = bj + bi[i];
493: for (j = 0; j < nz; j++) {
494: x = rtmp + 36 * ajtmp[j];
495: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
496: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
497: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
498: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
499: x[34] = x[35] = 0.0;
500: }
501: /* load in initial (unfactored row) */
502: nz = ai[i + 1] - ai[i];
503: ajtmpold = aj + ai[i];
504: v = aa + 36 * ai[i];
505: for (j = 0; j < nz; j++) {
506: x = rtmp + 36 * ajtmpold[j];
507: x[0] = v[0];
508: x[1] = v[1];
509: x[2] = v[2];
510: x[3] = v[3];
511: x[4] = v[4];
512: x[5] = v[5];
513: x[6] = v[6];
514: x[7] = v[7];
515: x[8] = v[8];
516: x[9] = v[9];
517: x[10] = v[10];
518: x[11] = v[11];
519: x[12] = v[12];
520: x[13] = v[13];
521: x[14] = v[14];
522: x[15] = v[15];
523: x[16] = v[16];
524: x[17] = v[17];
525: x[18] = v[18];
526: x[19] = v[19];
527: x[20] = v[20];
528: x[21] = v[21];
529: x[22] = v[22];
530: x[23] = v[23];
531: x[24] = v[24];
532: x[25] = v[25];
533: x[26] = v[26];
534: x[27] = v[27];
535: x[28] = v[28];
536: x[29] = v[29];
537: x[30] = v[30];
538: x[31] = v[31];
539: x[32] = v[32];
540: x[33] = v[33];
541: x[34] = v[34];
542: x[35] = v[35];
543: v += 36;
544: }
545: row = *ajtmp++;
546: while (row < i) {
547: pc = rtmp + 36 * row;
548: p1 = pc[0];
549: p2 = pc[1];
550: p3 = pc[2];
551: p4 = pc[3];
552: p5 = pc[4];
553: p6 = pc[5];
554: p7 = pc[6];
555: p8 = pc[7];
556: p9 = pc[8];
557: p10 = pc[9];
558: p11 = pc[10];
559: p12 = pc[11];
560: p13 = pc[12];
561: p14 = pc[13];
562: p15 = pc[14];
563: p16 = pc[15];
564: p17 = pc[16];
565: p18 = pc[17];
566: p19 = pc[18];
567: p20 = pc[19];
568: p21 = pc[20];
569: p22 = pc[21];
570: p23 = pc[22];
571: p24 = pc[23];
572: p25 = pc[24];
573: p26 = pc[25];
574: p27 = pc[26];
575: p28 = pc[27];
576: p29 = pc[28];
577: p30 = pc[29];
578: p31 = pc[30];
579: p32 = pc[31];
580: p33 = pc[32];
581: p34 = pc[33];
582: p35 = pc[34];
583: p36 = pc[35];
584: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 || p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 || p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 || p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 || p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 || p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0) {
585: pv = ba + 36 * diag_offset[row];
586: pj = bj + diag_offset[row] + 1;
587: x1 = pv[0];
588: x2 = pv[1];
589: x3 = pv[2];
590: x4 = pv[3];
591: x5 = pv[4];
592: x6 = pv[5];
593: x7 = pv[6];
594: x8 = pv[7];
595: x9 = pv[8];
596: x10 = pv[9];
597: x11 = pv[10];
598: x12 = pv[11];
599: x13 = pv[12];
600: x14 = pv[13];
601: x15 = pv[14];
602: x16 = pv[15];
603: x17 = pv[16];
604: x18 = pv[17];
605: x19 = pv[18];
606: x20 = pv[19];
607: x21 = pv[20];
608: x22 = pv[21];
609: x23 = pv[22];
610: x24 = pv[23];
611: x25 = pv[24];
612: x26 = pv[25];
613: x27 = pv[26];
614: x28 = pv[27];
615: x29 = pv[28];
616: x30 = pv[29];
617: x31 = pv[30];
618: x32 = pv[31];
619: x33 = pv[32];
620: x34 = pv[33];
621: x35 = pv[34];
622: x36 = pv[35];
623: pc[0] = m1 = p1 * x1 + p7 * x2 + p13 * x3 + p19 * x4 + p25 * x5 + p31 * x6;
624: pc[1] = m2 = p2 * x1 + p8 * x2 + p14 * x3 + p20 * x4 + p26 * x5 + p32 * x6;
625: pc[2] = m3 = p3 * x1 + p9 * x2 + p15 * x3 + p21 * x4 + p27 * x5 + p33 * x6;
626: pc[3] = m4 = p4 * x1 + p10 * x2 + p16 * x3 + p22 * x4 + p28 * x5 + p34 * x6;
627: pc[4] = m5 = p5 * x1 + p11 * x2 + p17 * x3 + p23 * x4 + p29 * x5 + p35 * x6;
628: pc[5] = m6 = p6 * x1 + p12 * x2 + p18 * x3 + p24 * x4 + p30 * x5 + p36 * x6;
630: pc[6] = m7 = p1 * x7 + p7 * x8 + p13 * x9 + p19 * x10 + p25 * x11 + p31 * x12;
631: pc[7] = m8 = p2 * x7 + p8 * x8 + p14 * x9 + p20 * x10 + p26 * x11 + p32 * x12;
632: pc[8] = m9 = p3 * x7 + p9 * x8 + p15 * x9 + p21 * x10 + p27 * x11 + p33 * x12;
633: pc[9] = m10 = p4 * x7 + p10 * x8 + p16 * x9 + p22 * x10 + p28 * x11 + p34 * x12;
634: pc[10] = m11 = p5 * x7 + p11 * x8 + p17 * x9 + p23 * x10 + p29 * x11 + p35 * x12;
635: pc[11] = m12 = p6 * x7 + p12 * x8 + p18 * x9 + p24 * x10 + p30 * x11 + p36 * x12;
637: pc[12] = m13 = p1 * x13 + p7 * x14 + p13 * x15 + p19 * x16 + p25 * x17 + p31 * x18;
638: pc[13] = m14 = p2 * x13 + p8 * x14 + p14 * x15 + p20 * x16 + p26 * x17 + p32 * x18;
639: pc[14] = m15 = p3 * x13 + p9 * x14 + p15 * x15 + p21 * x16 + p27 * x17 + p33 * x18;
640: pc[15] = m16 = p4 * x13 + p10 * x14 + p16 * x15 + p22 * x16 + p28 * x17 + p34 * x18;
641: pc[16] = m17 = p5 * x13 + p11 * x14 + p17 * x15 + p23 * x16 + p29 * x17 + p35 * x18;
642: pc[17] = m18 = p6 * x13 + p12 * x14 + p18 * x15 + p24 * x16 + p30 * x17 + p36 * x18;
644: pc[18] = m19 = p1 * x19 + p7 * x20 + p13 * x21 + p19 * x22 + p25 * x23 + p31 * x24;
645: pc[19] = m20 = p2 * x19 + p8 * x20 + p14 * x21 + p20 * x22 + p26 * x23 + p32 * x24;
646: pc[20] = m21 = p3 * x19 + p9 * x20 + p15 * x21 + p21 * x22 + p27 * x23 + p33 * x24;
647: pc[21] = m22 = p4 * x19 + p10 * x20 + p16 * x21 + p22 * x22 + p28 * x23 + p34 * x24;
648: pc[22] = m23 = p5 * x19 + p11 * x20 + p17 * x21 + p23 * x22 + p29 * x23 + p35 * x24;
649: pc[23] = m24 = p6 * x19 + p12 * x20 + p18 * x21 + p24 * x22 + p30 * x23 + p36 * x24;
651: pc[24] = m25 = p1 * x25 + p7 * x26 + p13 * x27 + p19 * x28 + p25 * x29 + p31 * x30;
652: pc[25] = m26 = p2 * x25 + p8 * x26 + p14 * x27 + p20 * x28 + p26 * x29 + p32 * x30;
653: pc[26] = m27 = p3 * x25 + p9 * x26 + p15 * x27 + p21 * x28 + p27 * x29 + p33 * x30;
654: pc[27] = m28 = p4 * x25 + p10 * x26 + p16 * x27 + p22 * x28 + p28 * x29 + p34 * x30;
655: pc[28] = m29 = p5 * x25 + p11 * x26 + p17 * x27 + p23 * x28 + p29 * x29 + p35 * x30;
656: pc[29] = m30 = p6 * x25 + p12 * x26 + p18 * x27 + p24 * x28 + p30 * x29 + p36 * x30;
658: pc[30] = m31 = p1 * x31 + p7 * x32 + p13 * x33 + p19 * x34 + p25 * x35 + p31 * x36;
659: pc[31] = m32 = p2 * x31 + p8 * x32 + p14 * x33 + p20 * x34 + p26 * x35 + p32 * x36;
660: pc[32] = m33 = p3 * x31 + p9 * x32 + p15 * x33 + p21 * x34 + p27 * x35 + p33 * x36;
661: pc[33] = m34 = p4 * x31 + p10 * x32 + p16 * x33 + p22 * x34 + p28 * x35 + p34 * x36;
662: pc[34] = m35 = p5 * x31 + p11 * x32 + p17 * x33 + p23 * x34 + p29 * x35 + p35 * x36;
663: pc[35] = m36 = p6 * x31 + p12 * x32 + p18 * x33 + p24 * x34 + p30 * x35 + p36 * x36;
665: nz = bi[row + 1] - diag_offset[row] - 1;
666: pv += 36;
667: for (j = 0; j < nz; j++) {
668: x1 = pv[0];
669: x2 = pv[1];
670: x3 = pv[2];
671: x4 = pv[3];
672: x5 = pv[4];
673: x6 = pv[5];
674: x7 = pv[6];
675: x8 = pv[7];
676: x9 = pv[8];
677: x10 = pv[9];
678: x11 = pv[10];
679: x12 = pv[11];
680: x13 = pv[12];
681: x14 = pv[13];
682: x15 = pv[14];
683: x16 = pv[15];
684: x17 = pv[16];
685: x18 = pv[17];
686: x19 = pv[18];
687: x20 = pv[19];
688: x21 = pv[20];
689: x22 = pv[21];
690: x23 = pv[22];
691: x24 = pv[23];
692: x25 = pv[24];
693: x26 = pv[25];
694: x27 = pv[26];
695: x28 = pv[27];
696: x29 = pv[28];
697: x30 = pv[29];
698: x31 = pv[30];
699: x32 = pv[31];
700: x33 = pv[32];
701: x34 = pv[33];
702: x35 = pv[34];
703: x36 = pv[35];
704: x = rtmp + 36 * pj[j];
705: x[0] -= m1 * x1 + m7 * x2 + m13 * x3 + m19 * x4 + m25 * x5 + m31 * x6;
706: x[1] -= m2 * x1 + m8 * x2 + m14 * x3 + m20 * x4 + m26 * x5 + m32 * x6;
707: x[2] -= m3 * x1 + m9 * x2 + m15 * x3 + m21 * x4 + m27 * x5 + m33 * x6;
708: x[3] -= m4 * x1 + m10 * x2 + m16 * x3 + m22 * x4 + m28 * x5 + m34 * x6;
709: x[4] -= m5 * x1 + m11 * x2 + m17 * x3 + m23 * x4 + m29 * x5 + m35 * x6;
710: x[5] -= m6 * x1 + m12 * x2 + m18 * x3 + m24 * x4 + m30 * x5 + m36 * x6;
712: x[6] -= m1 * x7 + m7 * x8 + m13 * x9 + m19 * x10 + m25 * x11 + m31 * x12;
713: x[7] -= m2 * x7 + m8 * x8 + m14 * x9 + m20 * x10 + m26 * x11 + m32 * x12;
714: x[8] -= m3 * x7 + m9 * x8 + m15 * x9 + m21 * x10 + m27 * x11 + m33 * x12;
715: x[9] -= m4 * x7 + m10 * x8 + m16 * x9 + m22 * x10 + m28 * x11 + m34 * x12;
716: x[10] -= m5 * x7 + m11 * x8 + m17 * x9 + m23 * x10 + m29 * x11 + m35 * x12;
717: x[11] -= m6 * x7 + m12 * x8 + m18 * x9 + m24 * x10 + m30 * x11 + m36 * x12;
719: x[12] -= m1 * x13 + m7 * x14 + m13 * x15 + m19 * x16 + m25 * x17 + m31 * x18;
720: x[13] -= m2 * x13 + m8 * x14 + m14 * x15 + m20 * x16 + m26 * x17 + m32 * x18;
721: x[14] -= m3 * x13 + m9 * x14 + m15 * x15 + m21 * x16 + m27 * x17 + m33 * x18;
722: x[15] -= m4 * x13 + m10 * x14 + m16 * x15 + m22 * x16 + m28 * x17 + m34 * x18;
723: x[16] -= m5 * x13 + m11 * x14 + m17 * x15 + m23 * x16 + m29 * x17 + m35 * x18;
724: x[17] -= m6 * x13 + m12 * x14 + m18 * x15 + m24 * x16 + m30 * x17 + m36 * x18;
726: x[18] -= m1 * x19 + m7 * x20 + m13 * x21 + m19 * x22 + m25 * x23 + m31 * x24;
727: x[19] -= m2 * x19 + m8 * x20 + m14 * x21 + m20 * x22 + m26 * x23 + m32 * x24;
728: x[20] -= m3 * x19 + m9 * x20 + m15 * x21 + m21 * x22 + m27 * x23 + m33 * x24;
729: x[21] -= m4 * x19 + m10 * x20 + m16 * x21 + m22 * x22 + m28 * x23 + m34 * x24;
730: x[22] -= m5 * x19 + m11 * x20 + m17 * x21 + m23 * x22 + m29 * x23 + m35 * x24;
731: x[23] -= m6 * x19 + m12 * x20 + m18 * x21 + m24 * x22 + m30 * x23 + m36 * x24;
733: x[24] -= m1 * x25 + m7 * x26 + m13 * x27 + m19 * x28 + m25 * x29 + m31 * x30;
734: x[25] -= m2 * x25 + m8 * x26 + m14 * x27 + m20 * x28 + m26 * x29 + m32 * x30;
735: x[26] -= m3 * x25 + m9 * x26 + m15 * x27 + m21 * x28 + m27 * x29 + m33 * x30;
736: x[27] -= m4 * x25 + m10 * x26 + m16 * x27 + m22 * x28 + m28 * x29 + m34 * x30;
737: x[28] -= m5 * x25 + m11 * x26 + m17 * x27 + m23 * x28 + m29 * x29 + m35 * x30;
738: x[29] -= m6 * x25 + m12 * x26 + m18 * x27 + m24 * x28 + m30 * x29 + m36 * x30;
740: x[30] -= m1 * x31 + m7 * x32 + m13 * x33 + m19 * x34 + m25 * x35 + m31 * x36;
741: x[31] -= m2 * x31 + m8 * x32 + m14 * x33 + m20 * x34 + m26 * x35 + m32 * x36;
742: x[32] -= m3 * x31 + m9 * x32 + m15 * x33 + m21 * x34 + m27 * x35 + m33 * x36;
743: x[33] -= m4 * x31 + m10 * x32 + m16 * x33 + m22 * x34 + m28 * x35 + m34 * x36;
744: x[34] -= m5 * x31 + m11 * x32 + m17 * x33 + m23 * x34 + m29 * x35 + m35 * x36;
745: x[35] -= m6 * x31 + m12 * x32 + m18 * x33 + m24 * x34 + m30 * x35 + m36 * x36;
747: pv += 36;
748: }
749: PetscCall(PetscLogFlops(432.0 * nz + 396.0));
750: }
751: row = *ajtmp++;
752: }
753: /* finished row so stick it into b->a */
754: pv = ba + 36 * bi[i];
755: pj = bj + bi[i];
756: nz = bi[i + 1] - bi[i];
757: for (j = 0; j < nz; j++) {
758: x = rtmp + 36 * pj[j];
759: pv[0] = x[0];
760: pv[1] = x[1];
761: pv[2] = x[2];
762: pv[3] = x[3];
763: pv[4] = x[4];
764: pv[5] = x[5];
765: pv[6] = x[6];
766: pv[7] = x[7];
767: pv[8] = x[8];
768: pv[9] = x[9];
769: pv[10] = x[10];
770: pv[11] = x[11];
771: pv[12] = x[12];
772: pv[13] = x[13];
773: pv[14] = x[14];
774: pv[15] = x[15];
775: pv[16] = x[16];
776: pv[17] = x[17];
777: pv[18] = x[18];
778: pv[19] = x[19];
779: pv[20] = x[20];
780: pv[21] = x[21];
781: pv[22] = x[22];
782: pv[23] = x[23];
783: pv[24] = x[24];
784: pv[25] = x[25];
785: pv[26] = x[26];
786: pv[27] = x[27];
787: pv[28] = x[28];
788: pv[29] = x[29];
789: pv[30] = x[30];
790: pv[31] = x[31];
791: pv[32] = x[32];
792: pv[33] = x[33];
793: pv[34] = x[34];
794: pv[35] = x[35];
795: pv += 36;
796: }
797: /* invert diagonal block */
798: w = ba + 36 * diag_offset[i];
799: PetscCall(PetscKernel_A_gets_inverse_A_6(w, shift, allowzeropivot, &zeropivotdetected));
800: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
801: }
803: PetscCall(PetscFree(rtmp));
805: C->ops->solve = MatSolve_SeqBAIJ_6_NaturalOrdering_inplace;
806: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_6_NaturalOrdering_inplace;
807: C->assembled = PETSC_TRUE;
809: PetscCall(PetscLogFlops(1.333333333333 * 6 * 6 * 6 * b->mbs)); /* from inverting diagonal blocks */
810: PetscFunctionReturn(PETSC_SUCCESS);
811: }
813: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_6_NaturalOrdering(Mat B, Mat A, const MatFactorInfo *info)
814: {
815: Mat C = B;
816: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
817: PetscInt i, j, k, nz, nzL, row;
818: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
819: const PetscInt *ajtmp, *bjtmp, *bdiag = b->diag, *pj, bs2 = a->bs2;
820: MatScalar *rtmp, *pc, *mwork, *v, *pv, *aa = a->a;
821: PetscInt flg;
822: PetscReal shift = info->shiftamount;
823: PetscBool allowzeropivot, zeropivotdetected;
825: PetscFunctionBegin;
826: allowzeropivot = PetscNot(A->erroriffailure);
828: /* generate work space needed by the factorization */
829: PetscCall(PetscMalloc2(bs2 * n, &rtmp, bs2, &mwork));
830: PetscCall(PetscArrayzero(rtmp, bs2 * n));
832: for (i = 0; i < n; i++) {
833: /* zero rtmp */
834: /* L part */
835: nz = bi[i + 1] - bi[i];
836: bjtmp = bj + bi[i];
837: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
839: /* U part */
840: nz = bdiag[i] - bdiag[i + 1];
841: bjtmp = bj + bdiag[i + 1] + 1;
842: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
844: /* load in initial (unfactored row) */
845: nz = ai[i + 1] - ai[i];
846: ajtmp = aj + ai[i];
847: v = aa + bs2 * ai[i];
848: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(rtmp + bs2 * ajtmp[j], v + bs2 * j, bs2));
850: /* elimination */
851: bjtmp = bj + bi[i];
852: nzL = bi[i + 1] - bi[i];
853: for (k = 0; k < nzL; k++) {
854: row = bjtmp[k];
855: pc = rtmp + bs2 * row;
856: for (flg = 0, j = 0; j < bs2; j++) {
857: if (pc[j] != 0.0) {
858: flg = 1;
859: break;
860: }
861: }
862: if (flg) {
863: pv = b->a + bs2 * bdiag[row];
864: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
865: PetscCall(PetscKernel_A_gets_A_times_B_6(pc, pv, mwork));
867: pj = b->j + bdiag[row + 1] + 1; /* beginning of U(row,:) */
868: pv = b->a + bs2 * (bdiag[row + 1] + 1);
869: nz = bdiag[row] - bdiag[row + 1] - 1; /* num of entries inU(row,:), excluding diag */
870: for (j = 0; j < nz; j++) {
871: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
872: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
873: v = rtmp + bs2 * pj[j];
874: PetscCall(PetscKernel_A_gets_A_minus_B_times_C_6(v, pc, pv));
875: pv += bs2;
876: }
877: PetscCall(PetscLogFlops(432.0 * nz + 396)); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
878: }
879: }
881: /* finished row so stick it into b->a */
882: /* L part */
883: pv = b->a + bs2 * bi[i];
884: pj = b->j + bi[i];
885: nz = bi[i + 1] - bi[i];
886: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
888: /* Mark diagonal and invert diagonal for simpler triangular solves */
889: pv = b->a + bs2 * bdiag[i];
890: pj = b->j + bdiag[i];
891: PetscCall(PetscArraycpy(pv, rtmp + bs2 * pj[0], bs2));
892: PetscCall(PetscKernel_A_gets_inverse_A_6(pv, shift, allowzeropivot, &zeropivotdetected));
893: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
895: /* U part */
896: pv = b->a + bs2 * (bdiag[i + 1] + 1);
897: pj = b->j + bdiag[i + 1] + 1;
898: nz = bdiag[i] - bdiag[i + 1] - 1;
899: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
900: }
901: PetscCall(PetscFree2(rtmp, mwork));
903: C->ops->solve = MatSolve_SeqBAIJ_6_NaturalOrdering;
904: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_6_NaturalOrdering;
905: C->assembled = PETSC_TRUE;
907: PetscCall(PetscLogFlops(1.333333333333 * 6 * 6 * 6 * n)); /* from inverting diagonal blocks */
908: PetscFunctionReturn(PETSC_SUCCESS);
909: }