Actual source code: ex9busdmnetwork.c
2: static char help[] = "This example uses the same problem set up of ex9busdmnetwork.c. \n\
3: It demonstrates setting and accessing of variables for individual components, instead of \n\
4: the network vertices (as used in ex9busdmnetwork.c). This is especially useful where vertices \n\
5: /edges have multiple-components associated with them and one or more components has physics \n\
6: associated with it. \n\
7: Input parameters include:\n\
8: -nc : number of copies of the base case\n\n";
10: /*
11: This example was modified from ex9busdmnetwork.c.
12: */
14: #include <petscts.h>
15: #include <petscdmnetwork.h>
17: #define FREQ 60
18: #define W_S (2 * PETSC_PI * FREQ)
19: #define NGEN 3 /* No. of generators in the 9 bus system */
20: #define NLOAD 3 /* No. of loads in the 9 bus system */
21: #define NBUS 9 /* No. of buses in the 9 bus system */
22: #define NBRANCH 9 /* No. of branches in the 9 bus system */
24: typedef struct {
25: PetscInt id; /* Bus Number or extended bus name*/
26: PetscScalar mbase; /* MVA base of the machine */
27: PetscScalar PG; /* Generator active power output */
28: PetscScalar QG; /* Generator reactive power output */
30: /* Generator constants */
31: PetscScalar H; /* Inertia constant */
32: PetscScalar Rs; /* Stator Resistance */
33: PetscScalar Xd; /* d-axis reactance */
34: PetscScalar Xdp; /* d-axis transient reactance */
35: PetscScalar Xq; /* q-axis reactance Xq(1) set to 0.4360, value given in text 0.0969 */
36: PetscScalar Xqp; /* q-axis transient reactance */
37: PetscScalar Td0p; /* d-axis open circuit time constant */
38: PetscScalar Tq0p; /* q-axis open circuit time constant */
39: PetscScalar M; /* M = 2*H/W_S */
40: PetscScalar D; /* D = 0.1*M */
41: PetscScalar TM; /* Mechanical Torque */
42: } Gen;
44: typedef struct {
45: /* Exciter system constants */
46: PetscScalar KA; /* Voltage regulator gain constant */
47: PetscScalar TA; /* Voltage regulator time constant */
48: PetscScalar KE; /* Exciter gain constant */
49: PetscScalar TE; /* Exciter time constant */
50: PetscScalar KF; /* Feedback stabilizer gain constant */
51: PetscScalar TF; /* Feedback stabilizer time constant */
52: PetscScalar k1, k2; /* calculating the saturation function SE = k1*exp(k2*Efd) */
53: PetscScalar Vref; /* Voltage regulator voltage setpoint */
54: } Exc;
56: typedef struct {
57: PetscInt id; /* node id */
58: PetscInt nofgen; /* Number of generators at the bus*/
59: PetscInt nofload; /* Number of load at the bus*/
60: PetscScalar yff[2]; /* yff[0]= imaginary part of admittance, yff[1]=real part of admittance*/
61: PetscScalar vr; /* Real component of bus voltage */
62: PetscScalar vi; /* Imaginary component of bus voltage */
63: } Bus;
65: /* Load constants
66: We use a composite load model that describes the load and reactive powers at each time instant as follows
67: P(t) = \sum\limits_{i=0}^ld_nsegsp \ld_alphap_i*P_D0(\frac{V_m(t)}{V_m0})^\ld_betap_i
68: Q(t) = \sum\limits_{i=0}^ld_nsegsq \ld_alphaq_i*Q_D0(\frac{V_m(t)}{V_m0})^\ld_betaq_i
69: where
70: id - index of the load
71: ld_nsegsp,ld_nsegsq - Number of individual load models for real and reactive power loads
72: ld_alphap,ld_alphap - Percentage contribution (weights) or loads
73: P_D0 - Real power load
74: Q_D0 - Reactive power load
75: Vm(t) - Voltage magnitude at time t
76: Vm0 - Voltage magnitude at t = 0
77: ld_betap, ld_betaq - exponents describing the load model for real and reactive part
79: Note: All loads have the same characteristic currently.
80: */
81: typedef struct {
82: PetscInt id; /* bus id */
83: PetscInt ld_nsegsp, ld_nsegsq;
84: PetscScalar PD0, QD0;
85: PetscScalar ld_alphap[3]; /* ld_alphap=[1,0,0], an array, not a value, so use *ld_alphap; */
86: PetscScalar ld_betap[3], ld_alphaq[3], ld_betaq[3];
87: } Load;
89: typedef struct {
90: PetscInt id; /* node id */
91: PetscScalar yft[2]; /* yft[0]= imaginary part of admittance, yft[1]=real part of admittance*/
92: } Branch;
94: typedef struct {
95: PetscReal tfaulton, tfaultoff; /* Fault on and off times */
96: PetscReal t;
97: PetscReal t0, tmax; /* initial time and final time */
98: PetscInt faultbus; /* Fault bus */
99: PetscScalar Rfault; /* Fault resistance (pu) */
100: PetscScalar *ybusfault;
101: PetscBool alg_flg;
102: } Userctx;
104: /* Used to read data into the DMNetwork components */
105: PetscErrorCode read_data(PetscInt nc, Gen **pgen, Exc **pexc, Load **pload, Bus **pbus, Branch **pbranch, PetscInt **pedgelist)
106: {
107: PetscInt i, j, row[1], col[2];
108: PetscInt *edgelist;
109: PetscInt nofgen[9] = {1, 1, 1, 0, 0, 0, 0, 0, 0}; /* Buses at which generators are incident */
110: PetscInt nofload[9] = {0, 0, 0, 0, 1, 1, 0, 1, 0}; /* Buses at which loads are incident */
111: const PetscScalar *varr;
112: PetscScalar M[3], D[3];
113: Bus *bus;
114: Branch *branch;
115: Gen *gen;
116: Exc *exc;
117: Load *load;
118: Mat Ybus;
119: Vec V0;
121: /*10 parameters*/
122: /* Generator real and reactive powers (found via loadflow) */
123: static const PetscScalar PG[3] = {0.716786142395021, 1.630000000000000, 0.850000000000000};
124: static const PetscScalar QG[3] = {0.270702180178785, 0.066120127797275, -0.108402221791588};
126: /* Generator constants */
127: static const PetscScalar H[3] = {23.64, 6.4, 3.01}; /* Inertia constant */
128: static const PetscScalar Rs[3] = {0.0, 0.0, 0.0}; /* Stator Resistance */
129: static const PetscScalar Xd[3] = {0.146, 0.8958, 1.3125}; /* d-axis reactance */
130: static const PetscScalar Xdp[3] = {0.0608, 0.1198, 0.1813}; /* d-axis transient reactance */
131: static const PetscScalar Xq[3] = {0.4360, 0.8645, 1.2578}; /* q-axis reactance Xq(1) set to 0.4360, value given in text 0.0969 */
132: static const PetscScalar Xqp[3] = {0.0969, 0.1969, 0.25}; /* q-axis transient reactance */
133: static const PetscScalar Td0p[3] = {8.96, 6.0, 5.89}; /* d-axis open circuit time constant */
134: static const PetscScalar Tq0p[3] = {0.31, 0.535, 0.6}; /* q-axis open circuit time constant */
136: /* Exciter system constants (8 parameters)*/
137: static const PetscScalar KA[3] = {20.0, 20.0, 20.0}; /* Voltage regulartor gain constant */
138: static const PetscScalar TA[3] = {0.2, 0.2, 0.2}; /* Voltage regulator time constant */
139: static const PetscScalar KE[3] = {1.0, 1.0, 1.0}; /* Exciter gain constant */
140: static const PetscScalar TE[3] = {0.314, 0.314, 0.314}; /* Exciter time constant */
141: static const PetscScalar KF[3] = {0.063, 0.063, 0.063}; /* Feedback stabilizer gain constant */
142: static const PetscScalar TF[3] = {0.35, 0.35, 0.35}; /* Feedback stabilizer time constant */
143: static const PetscScalar k1[3] = {0.0039, 0.0039, 0.0039};
144: static const PetscScalar k2[3] = {1.555, 1.555, 1.555}; /* k1 and k2 for calculating the saturation function SE = k1*exp(k2*Efd) */
146: /* Load constants */
147: static const PetscScalar PD0[3] = {1.25, 0.9, 1.0};
148: static const PetscScalar QD0[3] = {0.5, 0.3, 0.35};
149: static const PetscScalar ld_alphaq[3] = {1, 0, 0};
150: static const PetscScalar ld_betaq[3] = {2, 1, 0};
151: static const PetscScalar ld_betap[3] = {2, 1, 0};
152: static const PetscScalar ld_alphap[3] = {1, 0, 0};
153: PetscInt ld_nsegsp[3] = {3, 3, 3};
154: PetscInt ld_nsegsq[3] = {3, 3, 3};
155: PetscViewer Xview, Ybusview;
156: PetscInt neqs_net, m, n;
158: PetscFunctionBeginUser;
159: /* Read V0 and Ybus from files */
160: PetscCall(PetscViewerBinaryOpen(PETSC_COMM_SELF, "X.bin", FILE_MODE_READ, &Xview));
161: PetscCall(PetscViewerBinaryOpen(PETSC_COMM_SELF, "Ybus.bin", FILE_MODE_READ, &Ybusview));
162: PetscCall(VecCreate(PETSC_COMM_SELF, &V0));
163: PetscCall(VecLoad(V0, Xview));
165: PetscCall(MatCreate(PETSC_COMM_SELF, &Ybus));
166: PetscCall(MatSetType(Ybus, MATBAIJ));
167: PetscCall(MatLoad(Ybus, Ybusview));
169: /* Destroy unnecessary stuff */
170: PetscCall(PetscViewerDestroy(&Xview));
171: PetscCall(PetscViewerDestroy(&Ybusview));
173: PetscCall(MatGetLocalSize(Ybus, &m, &n));
174: neqs_net = 2 * NBUS; /* # eqs. for network subsystem */
175: PetscCheck(m == neqs_net && n == neqs_net, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "matrix Ybus is in wrong sizes");
177: M[0] = 2 * H[0] / W_S;
178: M[1] = 2 * H[1] / W_S;
179: M[2] = 2 * H[2] / W_S;
180: D[0] = 0.1 * M[0];
181: D[1] = 0.1 * M[1];
182: D[2] = 0.1 * M[2];
184: /* Allocate memory for bus, generators, exciter, loads and branches */
185: PetscCall(PetscCalloc5(NBUS * nc, &bus, NGEN * nc, &gen, NLOAD * nc, &load, NBRANCH * nc + (nc - 1), &branch, NGEN * nc, &exc));
187: PetscCall(VecGetArrayRead(V0, &varr));
189: /* read bus data */
190: for (i = 0; i < nc; i++) {
191: for (j = 0; j < NBUS; j++) {
192: bus[i * 9 + j].id = i * 9 + j;
193: bus[i * 9 + j].nofgen = nofgen[j];
194: bus[i * 9 + j].nofload = nofload[j];
195: bus[i * 9 + j].vr = varr[2 * j];
196: bus[i * 9 + j].vi = varr[2 * j + 1];
197: row[0] = 2 * j;
198: col[0] = 2 * j;
199: col[1] = 2 * j + 1;
200: /* real and imaginary part of admittance from Ybus into yff */
201: PetscCall(MatGetValues(Ybus, 1, row, 2, col, bus[i * 9 + j].yff));
202: }
203: }
205: /* read generator data */
206: for (i = 0; i < nc; i++) {
207: for (j = 0; j < NGEN; j++) {
208: gen[i * 3 + j].id = i * 3 + j;
209: gen[i * 3 + j].PG = PG[j];
210: gen[i * 3 + j].QG = QG[j];
211: gen[i * 3 + j].H = H[j];
212: gen[i * 3 + j].Rs = Rs[j];
213: gen[i * 3 + j].Xd = Xd[j];
214: gen[i * 3 + j].Xdp = Xdp[j];
215: gen[i * 3 + j].Xq = Xq[j];
216: gen[i * 3 + j].Xqp = Xqp[j];
217: gen[i * 3 + j].Td0p = Td0p[j];
218: gen[i * 3 + j].Tq0p = Tq0p[j];
219: gen[i * 3 + j].M = M[j];
220: gen[i * 3 + j].D = D[j];
221: }
222: }
224: for (i = 0; i < nc; i++) {
225: for (j = 0; j < NGEN; j++) {
226: /* exciter system */
227: exc[i * 3 + j].KA = KA[j];
228: exc[i * 3 + j].TA = TA[j];
229: exc[i * 3 + j].KE = KE[j];
230: exc[i * 3 + j].TE = TE[j];
231: exc[i * 3 + j].KF = KF[j];
232: exc[i * 3 + j].TF = TF[j];
233: exc[i * 3 + j].k1 = k1[j];
234: exc[i * 3 + j].k2 = k2[j];
235: }
236: }
238: /* read load data */
239: for (i = 0; i < nc; i++) {
240: for (j = 0; j < NLOAD; j++) {
241: load[i * 3 + j].id = i * 3 + j;
242: load[i * 3 + j].PD0 = PD0[j];
243: load[i * 3 + j].QD0 = QD0[j];
244: load[i * 3 + j].ld_nsegsp = ld_nsegsp[j];
246: load[i * 3 + j].ld_alphap[0] = ld_alphap[0];
247: load[i * 3 + j].ld_alphap[1] = ld_alphap[1];
248: load[i * 3 + j].ld_alphap[2] = ld_alphap[2];
250: load[i * 3 + j].ld_alphaq[0] = ld_alphaq[0];
251: load[i * 3 + j].ld_alphaq[1] = ld_alphaq[1];
252: load[i * 3 + j].ld_alphaq[2] = ld_alphaq[2];
254: load[i * 3 + j].ld_betap[0] = ld_betap[0];
255: load[i * 3 + j].ld_betap[1] = ld_betap[1];
256: load[i * 3 + j].ld_betap[2] = ld_betap[2];
257: load[i * 3 + j].ld_nsegsq = ld_nsegsq[j];
259: load[i * 3 + j].ld_betaq[0] = ld_betaq[0];
260: load[i * 3 + j].ld_betaq[1] = ld_betaq[1];
261: load[i * 3 + j].ld_betaq[2] = ld_betaq[2];
262: }
263: }
264: PetscCall(PetscCalloc1(2 * NBRANCH * nc + 2 * (nc - 1), &edgelist));
266: /* read edgelist */
267: for (i = 0; i < nc; i++) {
268: for (j = 0; j < NBRANCH; j++) {
269: switch (j) {
270: case 0:
271: edgelist[i * 18 + 2 * j] = 0 + 9 * i;
272: edgelist[i * 18 + 2 * j + 1] = 3 + 9 * i;
273: break;
274: case 1:
275: edgelist[i * 18 + 2 * j] = 1 + 9 * i;
276: edgelist[i * 18 + 2 * j + 1] = 6 + 9 * i;
277: break;
278: case 2:
279: edgelist[i * 18 + 2 * j] = 2 + 9 * i;
280: edgelist[i * 18 + 2 * j + 1] = 8 + 9 * i;
281: break;
282: case 3:
283: edgelist[i * 18 + 2 * j] = 3 + 9 * i;
284: edgelist[i * 18 + 2 * j + 1] = 4 + 9 * i;
285: break;
286: case 4:
287: edgelist[i * 18 + 2 * j] = 3 + 9 * i;
288: edgelist[i * 18 + 2 * j + 1] = 5 + 9 * i;
289: break;
290: case 5:
291: edgelist[i * 18 + 2 * j] = 4 + 9 * i;
292: edgelist[i * 18 + 2 * j + 1] = 6 + 9 * i;
293: break;
294: case 6:
295: edgelist[i * 18 + 2 * j] = 5 + 9 * i;
296: edgelist[i * 18 + 2 * j + 1] = 8 + 9 * i;
297: break;
298: case 7:
299: edgelist[i * 18 + 2 * j] = 6 + 9 * i;
300: edgelist[i * 18 + 2 * j + 1] = 7 + 9 * i;
301: break;
302: case 8:
303: edgelist[i * 18 + 2 * j] = 7 + 9 * i;
304: edgelist[i * 18 + 2 * j + 1] = 8 + 9 * i;
305: break;
306: default:
307: break;
308: }
309: }
310: }
312: /* for connecting last bus of previous network(9*i-1) to first bus of next network(9*i), the branch admittance=-0.0301407+j17.3611 */
313: for (i = 1; i < nc; i++) {
314: edgelist[18 * nc + 2 * (i - 1)] = 8 + (i - 1) * 9;
315: edgelist[18 * nc + 2 * (i - 1) + 1] = 9 * i;
317: /* adding admittances to the off-diagonal elements */
318: branch[9 * nc + (i - 1)].id = 9 * nc + (i - 1);
319: branch[9 * nc + (i - 1)].yft[0] = 17.3611;
320: branch[9 * nc + (i - 1)].yft[1] = -0.0301407;
322: /* subtracting admittances from the diagonal elements */
323: bus[9 * i - 1].yff[0] -= 17.3611;
324: bus[9 * i - 1].yff[1] -= -0.0301407;
326: bus[9 * i].yff[0] -= 17.3611;
327: bus[9 * i].yff[1] -= -0.0301407;
328: }
330: /* read branch data */
331: for (i = 0; i < nc; i++) {
332: for (j = 0; j < NBRANCH; j++) {
333: branch[i * 9 + j].id = i * 9 + j;
335: row[0] = edgelist[2 * j] * 2;
336: col[0] = edgelist[2 * j + 1] * 2;
337: col[1] = edgelist[2 * j + 1] * 2 + 1;
338: PetscCall(MatGetValues(Ybus, 1, row, 2, col, branch[i * 9 + j].yft)); /*imaginary part of admittance*/
339: }
340: }
342: *pgen = gen;
343: *pexc = exc;
344: *pload = load;
345: *pbus = bus;
346: *pbranch = branch;
347: *pedgelist = edgelist;
349: PetscCall(VecRestoreArrayRead(V0, &varr));
351: /* Destroy unnecessary stuff */
352: PetscCall(MatDestroy(&Ybus));
353: PetscCall(VecDestroy(&V0));
354: PetscFunctionReturn(PETSC_SUCCESS);
355: }
357: PetscErrorCode SetInitialGuess(DM networkdm, Vec X)
358: {
359: Bus *bus;
360: Gen *gen;
361: Exc *exc;
362: PetscInt v, vStart, vEnd, offset;
363: PetscInt key, numComps, j;
364: PetscBool ghostvtex;
365: Vec localX;
366: PetscScalar *xarr;
367: PetscScalar Vr = 0, Vi = 0, Vm = 0, Vm2; /* Terminal voltage variables */
368: PetscScalar IGr, IGi; /* Generator real and imaginary current */
369: PetscScalar Eqp, Edp, delta; /* Generator variables */
370: PetscScalar Efd = 0, RF, VR; /* Exciter variables */
371: PetscScalar Vd, Vq; /* Generator dq axis voltages */
372: PetscScalar Id, Iq; /* Generator dq axis currents */
373: PetscScalar theta; /* Generator phase angle */
374: PetscScalar SE;
375: void *component;
377: PetscFunctionBegin;
378: PetscCall(DMNetworkGetVertexRange(networkdm, &vStart, &vEnd));
379: PetscCall(DMGetLocalVector(networkdm, &localX));
381: PetscCall(VecSet(X, 0.0));
382: PetscCall(DMGlobalToLocalBegin(networkdm, X, INSERT_VALUES, localX));
383: PetscCall(DMGlobalToLocalEnd(networkdm, X, INSERT_VALUES, localX));
385: PetscCall(VecGetArray(localX, &xarr));
387: for (v = vStart; v < vEnd; v++) {
388: PetscCall(DMNetworkIsGhostVertex(networkdm, v, &ghostvtex));
389: if (ghostvtex) continue;
391: PetscCall(DMNetworkGetNumComponents(networkdm, v, &numComps));
392: for (j = 0; j < numComps; j++) {
393: PetscCall(DMNetworkGetComponent(networkdm, v, j, &key, &component, NULL));
394: if (key == 1) {
395: bus = (Bus *)(component);
397: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offset));
398: xarr[offset] = bus->vr;
399: xarr[offset + 1] = bus->vi;
401: Vr = bus->vr;
402: Vi = bus->vi;
403: } else if (key == 2) {
404: gen = (Gen *)(component);
405: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offset));
406: Vm = PetscSqrtScalar(Vr * Vr + Vi * Vi);
407: Vm2 = Vm * Vm;
408: /* Real part of gen current */
409: IGr = (Vr * gen->PG + Vi * gen->QG) / Vm2;
410: /* Imaginary part of gen current */
411: IGi = (Vi * gen->PG - Vr * gen->QG) / Vm2;
413: /* Machine angle */
414: delta = atan2(Vi + gen->Xq * IGr, Vr - gen->Xq * IGi);
415: theta = PETSC_PI / 2.0 - delta;
417: /* d-axis stator current */
418: Id = IGr * PetscCosScalar(theta) - IGi * PetscSinScalar(theta);
420: /* q-axis stator current */
421: Iq = IGr * PetscSinScalar(theta) + IGi * PetscCosScalar(theta);
423: Vd = Vr * PetscCosScalar(theta) - Vi * PetscSinScalar(theta);
424: Vq = Vr * PetscSinScalar(theta) + Vi * PetscCosScalar(theta);
426: /* d-axis transient EMF */
427: Edp = Vd + gen->Rs * Id - gen->Xqp * Iq;
429: /* q-axis transient EMF */
430: Eqp = Vq + gen->Rs * Iq + gen->Xdp * Id;
432: gen->TM = gen->PG;
434: xarr[offset] = Eqp;
435: xarr[offset + 1] = Edp;
436: xarr[offset + 2] = delta;
437: xarr[offset + 3] = W_S;
438: xarr[offset + 4] = Id;
439: xarr[offset + 5] = Iq;
441: Efd = Eqp + (gen->Xd - gen->Xdp) * Id;
443: } else if (key == 3) {
444: exc = (Exc *)(component);
445: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offset));
447: SE = exc->k1 * PetscExpScalar(exc->k2 * Efd);
448: VR = exc->KE * Efd + SE;
449: RF = exc->KF * Efd / exc->TF;
451: xarr[offset] = Efd;
452: xarr[offset + 1] = RF;
453: xarr[offset + 2] = VR;
455: exc->Vref = Vm + (VR / exc->KA);
456: }
457: }
458: }
459: PetscCall(VecRestoreArray(localX, &xarr));
460: PetscCall(DMLocalToGlobalBegin(networkdm, localX, ADD_VALUES, X));
461: PetscCall(DMLocalToGlobalEnd(networkdm, localX, ADD_VALUES, X));
462: PetscCall(DMRestoreLocalVector(networkdm, &localX));
463: PetscFunctionReturn(PETSC_SUCCESS);
464: }
466: /* Converts from machine frame (dq) to network (phase a real,imag) reference frame */
467: PetscErrorCode dq2ri(PetscScalar Fd, PetscScalar Fq, PetscScalar delta, PetscScalar *Fr, PetscScalar *Fi)
468: {
469: PetscFunctionBegin;
470: *Fr = Fd * PetscSinScalar(delta) + Fq * PetscCosScalar(delta);
471: *Fi = -Fd * PetscCosScalar(delta) + Fq * PetscSinScalar(delta);
472: PetscFunctionReturn(PETSC_SUCCESS);
473: }
475: /* Converts from network frame ([phase a real,imag) to machine (dq) reference frame */
476: PetscErrorCode ri2dq(PetscScalar Fr, PetscScalar Fi, PetscScalar delta, PetscScalar *Fd, PetscScalar *Fq)
477: {
478: PetscFunctionBegin;
479: *Fd = Fr * PetscSinScalar(delta) - Fi * PetscCosScalar(delta);
480: *Fq = Fr * PetscCosScalar(delta) + Fi * PetscSinScalar(delta);
481: PetscFunctionReturn(PETSC_SUCCESS);
482: }
484: /* Computes F(t,U,U_t) where F() = 0 is the DAE to be solved. */
485: PetscErrorCode FormIFunction(TS ts, PetscReal t, Vec X, Vec Xdot, Vec F, Userctx *user)
486: {
487: DM networkdm;
488: Vec localX, localXdot, localF;
489: PetscInt vfrom, vto, offsetfrom, offsetto;
490: PetscInt v, vStart, vEnd, e;
491: PetscScalar *farr;
492: PetscScalar Vd = 0, Vq = 0, SE;
493: const PetscScalar *xarr, *xdotarr;
494: void *component;
495: PetscScalar Vr = 0, Vi = 0;
497: PetscFunctionBegin;
498: PetscCall(VecSet(F, 0.0));
500: PetscCall(TSGetDM(ts, &networkdm));
501: PetscCall(DMGetLocalVector(networkdm, &localF));
502: PetscCall(DMGetLocalVector(networkdm, &localX));
503: PetscCall(DMGetLocalVector(networkdm, &localXdot));
504: PetscCall(VecSet(localF, 0.0));
506: /* update ghost values of localX and localXdot */
507: PetscCall(DMGlobalToLocalBegin(networkdm, X, INSERT_VALUES, localX));
508: PetscCall(DMGlobalToLocalEnd(networkdm, X, INSERT_VALUES, localX));
510: PetscCall(DMGlobalToLocalBegin(networkdm, Xdot, INSERT_VALUES, localXdot));
511: PetscCall(DMGlobalToLocalEnd(networkdm, Xdot, INSERT_VALUES, localXdot));
513: PetscCall(VecGetArrayRead(localX, &xarr));
514: PetscCall(VecGetArrayRead(localXdot, &xdotarr));
515: PetscCall(VecGetArray(localF, &farr));
517: PetscCall(DMNetworkGetVertexRange(networkdm, &vStart, &vEnd));
519: for (v = vStart; v < vEnd; v++) {
520: PetscInt i, j, offsetbus, offsetgen, offsetexc, key;
521: Bus *bus;
522: Gen *gen;
523: Exc *exc;
524: Load *load;
525: PetscBool ghostvtex;
526: PetscInt numComps;
527: PetscScalar Yffr, Yffi; /* Real and imaginary fault admittances */
528: PetscScalar Vm, Vm2, Vm0;
529: PetscScalar Vr0 = 0, Vi0 = 0;
530: PetscScalar PD, QD;
532: PetscCall(DMNetworkIsGhostVertex(networkdm, v, &ghostvtex));
533: PetscCall(DMNetworkGetNumComponents(networkdm, v, &numComps));
535: for (j = 0; j < numComps; j++) {
536: PetscCall(DMNetworkGetComponent(networkdm, v, j, &key, &component, NULL));
537: if (key == 1) {
538: PetscInt nconnedges;
539: const PetscInt *connedges;
541: bus = (Bus *)(component);
542: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offsetbus));
543: if (!ghostvtex) {
544: Vr = xarr[offsetbus];
545: Vi = xarr[offsetbus + 1];
547: Yffr = bus->yff[1];
548: Yffi = bus->yff[0];
550: if (user->alg_flg) {
551: Yffr += user->ybusfault[bus->id * 2 + 1];
552: Yffi += user->ybusfault[bus->id * 2];
553: }
554: Vr0 = bus->vr;
555: Vi0 = bus->vi;
557: /* Network current balance residual IG + Y*V + IL = 0. Only YV is added here.
558: The generator current injection, IG, and load current injection, ID are added later
559: */
560: farr[offsetbus] += Yffi * Vr + Yffr * Vi; /* imaginary current due to diagonal elements */
561: farr[offsetbus + 1] += Yffr * Vr - Yffi * Vi; /* real current due to diagonal elements */
562: }
564: PetscCall(DMNetworkGetSupportingEdges(networkdm, v, &nconnedges, &connedges));
566: for (i = 0; i < nconnedges; i++) {
567: Branch *branch;
568: PetscInt keye;
569: PetscScalar Yfti, Yftr, Vfr, Vfi, Vtr, Vti;
570: const PetscInt *cone;
572: e = connedges[i];
573: PetscCall(DMNetworkGetComponent(networkdm, e, 0, &keye, (void **)&branch, NULL));
575: Yfti = branch->yft[0];
576: Yftr = branch->yft[1];
578: PetscCall(DMNetworkGetConnectedVertices(networkdm, e, &cone));
580: vfrom = cone[0];
581: vto = cone[1];
583: PetscCall(DMNetworkGetLocalVecOffset(networkdm, vfrom, 0, &offsetfrom));
584: PetscCall(DMNetworkGetLocalVecOffset(networkdm, vto, 0, &offsetto));
586: /* From bus and to bus real and imaginary voltages */
587: Vfr = xarr[offsetfrom];
588: Vfi = xarr[offsetfrom + 1];
589: Vtr = xarr[offsetto];
590: Vti = xarr[offsetto + 1];
592: if (vfrom == v) {
593: farr[offsetfrom] += Yftr * Vti + Yfti * Vtr;
594: farr[offsetfrom + 1] += Yftr * Vtr - Yfti * Vti;
595: } else {
596: farr[offsetto] += Yftr * Vfi + Yfti * Vfr;
597: farr[offsetto + 1] += Yftr * Vfr - Yfti * Vfi;
598: }
599: }
600: } else if (key == 2) {
601: if (!ghostvtex) {
602: PetscScalar Eqp, Edp, delta, w; /* Generator variables */
603: PetscScalar Efd; /* Exciter field voltage */
604: PetscScalar Id, Iq; /* Generator dq axis currents */
605: PetscScalar IGr, IGi, Zdq_inv[4], det;
606: PetscScalar Xd, Xdp, Td0p, Xq, Xqp, Tq0p, TM, D, M, Rs; /* Generator parameters */
608: gen = (Gen *)(component);
609: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offsetgen));
611: /* Generator state variables */
612: Eqp = xarr[offsetgen];
613: Edp = xarr[offsetgen + 1];
614: delta = xarr[offsetgen + 2];
615: w = xarr[offsetgen + 3];
616: Id = xarr[offsetgen + 4];
617: Iq = xarr[offsetgen + 5];
619: /* Generator parameters */
620: Xd = gen->Xd;
621: Xdp = gen->Xdp;
622: Td0p = gen->Td0p;
623: Xq = gen->Xq;
624: Xqp = gen->Xqp;
625: Tq0p = gen->Tq0p;
626: TM = gen->TM;
627: D = gen->D;
628: M = gen->M;
629: Rs = gen->Rs;
631: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, 2, &offsetexc));
632: Efd = xarr[offsetexc];
634: /* Generator differential equations */
635: farr[offsetgen] = (Eqp + (Xd - Xdp) * Id - Efd) / Td0p + xdotarr[offsetgen];
636: farr[offsetgen + 1] = (Edp - (Xq - Xqp) * Iq) / Tq0p + xdotarr[offsetgen + 1];
637: farr[offsetgen + 2] = -w + W_S + xdotarr[offsetgen + 2];
638: farr[offsetgen + 3] = (-TM + Edp * Id + Eqp * Iq + (Xqp - Xdp) * Id * Iq + D * (w - W_S)) / M + xdotarr[offsetgen + 3];
640: PetscCall(ri2dq(Vr, Vi, delta, &Vd, &Vq));
642: /* Algebraic equations for stator currents */
643: det = Rs * Rs + Xdp * Xqp;
645: Zdq_inv[0] = Rs / det;
646: Zdq_inv[1] = Xqp / det;
647: Zdq_inv[2] = -Xdp / det;
648: Zdq_inv[3] = Rs / det;
650: farr[offsetgen + 4] = Zdq_inv[0] * (-Edp + Vd) + Zdq_inv[1] * (-Eqp + Vq) + Id;
651: farr[offsetgen + 5] = Zdq_inv[2] * (-Edp + Vd) + Zdq_inv[3] * (-Eqp + Vq) + Iq;
653: PetscCall(dq2ri(Id, Iq, delta, &IGr, &IGi));
655: /* Add generator current injection to network */
656: farr[offsetbus] -= IGi;
657: farr[offsetbus + 1] -= IGr;
658: }
659: } else if (key == 3) {
660: if (!ghostvtex) {
661: PetscScalar k1, k2, KE, TE, TF, KA, KF, Vref, TA; /* Generator parameters */
662: PetscScalar Efd, RF, VR; /* Exciter variables */
664: exc = (Exc *)(component);
665: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offsetexc));
667: Efd = xarr[offsetexc];
668: RF = xarr[offsetexc + 1];
669: VR = xarr[offsetexc + 2];
671: k1 = exc->k1;
672: k2 = exc->k2;
673: KE = exc->KE;
674: TE = exc->TE;
675: TF = exc->TF;
676: KA = exc->KA;
677: KF = exc->KF;
678: Vref = exc->Vref;
679: TA = exc->TA;
681: Vm = PetscSqrtScalar(Vd * Vd + Vq * Vq);
682: SE = k1 * PetscExpScalar(k2 * Efd);
684: /* Exciter differential equations */
685: farr[offsetexc] = (KE * Efd + SE - VR) / TE + xdotarr[offsetexc];
686: farr[offsetexc + 1] = (RF - KF * Efd / TF) / TF + xdotarr[offsetexc + 1];
687: farr[offsetexc + 2] = (VR - KA * RF + KA * KF * Efd / TF - KA * (Vref - Vm)) / TA + xdotarr[offsetexc + 2];
688: }
689: } else if (key == 4) {
690: if (!ghostvtex) {
691: PetscInt k;
692: PetscInt ld_nsegsp;
693: PetscInt ld_nsegsq;
694: PetscScalar *ld_alphap;
695: PetscScalar *ld_betap, *ld_alphaq, *ld_betaq, PD0, QD0, IDr, IDi;
697: load = (Load *)(component);
699: /* Load Parameters */
700: ld_nsegsp = load->ld_nsegsp;
701: ld_alphap = load->ld_alphap;
702: ld_betap = load->ld_betap;
703: ld_nsegsq = load->ld_nsegsq;
704: ld_alphaq = load->ld_alphaq;
705: ld_betaq = load->ld_betaq;
706: PD0 = load->PD0;
707: QD0 = load->QD0;
709: Vr = xarr[offsetbus]; /* Real part of generator terminal voltage */
710: Vi = xarr[offsetbus + 1]; /* Imaginary part of the generator terminal voltage */
711: Vm = PetscSqrtScalar(Vr * Vr + Vi * Vi);
712: Vm2 = Vm * Vm;
713: Vm0 = PetscSqrtScalar(Vr0 * Vr0 + Vi0 * Vi0);
714: PD = QD = 0.0;
715: for (k = 0; k < ld_nsegsp; k++) PD += ld_alphap[k] * PD0 * PetscPowScalar((Vm / Vm0), ld_betap[k]);
716: for (k = 0; k < ld_nsegsq; k++) QD += ld_alphaq[k] * QD0 * PetscPowScalar((Vm / Vm0), ld_betaq[k]);
718: /* Load currents */
719: IDr = (PD * Vr + QD * Vi) / Vm2;
720: IDi = (-QD * Vr + PD * Vi) / Vm2;
722: /* Load current contribution to the network */
723: farr[offsetbus] += IDi;
724: farr[offsetbus + 1] += IDr;
725: }
726: }
727: }
728: }
730: PetscCall(VecRestoreArrayRead(localX, &xarr));
731: PetscCall(VecRestoreArrayRead(localXdot, &xdotarr));
732: PetscCall(VecRestoreArray(localF, &farr));
733: PetscCall(DMRestoreLocalVector(networkdm, &localX));
734: PetscCall(DMRestoreLocalVector(networkdm, &localXdot));
736: PetscCall(DMLocalToGlobalBegin(networkdm, localF, ADD_VALUES, F));
737: PetscCall(DMLocalToGlobalEnd(networkdm, localF, ADD_VALUES, F));
738: PetscCall(DMRestoreLocalVector(networkdm, &localF));
739: PetscFunctionReturn(PETSC_SUCCESS);
740: }
742: /* This function is used for solving the algebraic system only during fault on and
743: off times. It computes the entire F and then zeros out the part corresponding to
744: differential equations
745: F = [0;g(y)];
746: */
747: PetscErrorCode AlgFunction(SNES snes, Vec X, Vec F, void *ctx)
748: {
749: DM networkdm;
750: Vec localX, localF;
751: PetscInt vfrom, vto, offsetfrom, offsetto;
752: PetscInt v, vStart, vEnd, e;
753: PetscScalar *farr;
754: Userctx *user = (Userctx *)ctx;
755: const PetscScalar *xarr;
756: void *component;
757: PetscScalar Vr = 0, Vi = 0;
759: PetscFunctionBegin;
760: PetscCall(VecSet(F, 0.0));
761: PetscCall(SNESGetDM(snes, &networkdm));
762: PetscCall(DMGetLocalVector(networkdm, &localF));
763: PetscCall(DMGetLocalVector(networkdm, &localX));
764: PetscCall(VecSet(localF, 0.0));
766: /* update ghost values of locaX and locaXdot */
767: PetscCall(DMGlobalToLocalBegin(networkdm, X, INSERT_VALUES, localX));
768: PetscCall(DMGlobalToLocalEnd(networkdm, X, INSERT_VALUES, localX));
770: PetscCall(VecGetArrayRead(localX, &xarr));
771: PetscCall(VecGetArray(localF, &farr));
773: PetscCall(DMNetworkGetVertexRange(networkdm, &vStart, &vEnd));
775: for (v = vStart; v < vEnd; v++) {
776: PetscInt i, j, offsetbus, offsetgen, key, numComps;
777: PetscScalar Yffr, Yffi, Vm, Vm2, Vm0, Vr0 = 0, Vi0 = 0, PD, QD;
778: Bus *bus;
779: Gen *gen;
780: Load *load;
781: PetscBool ghostvtex;
783: PetscCall(DMNetworkIsGhostVertex(networkdm, v, &ghostvtex));
784: PetscCall(DMNetworkGetNumComponents(networkdm, v, &numComps));
786: for (j = 0; j < numComps; j++) {
787: PetscCall(DMNetworkGetComponent(networkdm, v, j, &key, &component, NULL));
788: if (key == 1) {
789: PetscInt nconnedges;
790: const PetscInt *connedges;
792: bus = (Bus *)(component);
793: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offsetbus));
794: if (!ghostvtex) {
795: Vr = xarr[offsetbus];
796: Vi = xarr[offsetbus + 1];
798: Yffr = bus->yff[1];
799: Yffi = bus->yff[0];
800: if (user->alg_flg) {
801: Yffr += user->ybusfault[bus->id * 2 + 1];
802: Yffi += user->ybusfault[bus->id * 2];
803: }
804: Vr0 = bus->vr;
805: Vi0 = bus->vi;
807: farr[offsetbus] += Yffi * Vr + Yffr * Vi;
808: farr[offsetbus + 1] += Yffr * Vr - Yffi * Vi;
809: }
810: PetscCall(DMNetworkGetSupportingEdges(networkdm, v, &nconnedges, &connedges));
812: for (i = 0; i < nconnedges; i++) {
813: Branch *branch;
814: PetscInt keye;
815: PetscScalar Yfti, Yftr, Vfr, Vfi, Vtr, Vti;
816: const PetscInt *cone;
818: e = connedges[i];
819: PetscCall(DMNetworkGetComponent(networkdm, e, 0, &keye, (void **)&branch, NULL));
821: Yfti = branch->yft[0];
822: Yftr = branch->yft[1];
824: PetscCall(DMNetworkGetConnectedVertices(networkdm, e, &cone));
825: vfrom = cone[0];
826: vto = cone[1];
828: PetscCall(DMNetworkGetLocalVecOffset(networkdm, vfrom, 0, &offsetfrom));
829: PetscCall(DMNetworkGetLocalVecOffset(networkdm, vto, 0, &offsetto));
831: /*From bus and to bus real and imaginary voltages */
832: Vfr = xarr[offsetfrom];
833: Vfi = xarr[offsetfrom + 1];
834: Vtr = xarr[offsetto];
835: Vti = xarr[offsetto + 1];
837: if (vfrom == v) {
838: farr[offsetfrom] += Yftr * Vti + Yfti * Vtr;
839: farr[offsetfrom + 1] += Yftr * Vtr - Yfti * Vti;
840: } else {
841: farr[offsetto] += Yftr * Vfi + Yfti * Vfr;
842: farr[offsetto + 1] += Yftr * Vfr - Yfti * Vfi;
843: }
844: }
845: } else if (key == 2) {
846: if (!ghostvtex) {
847: PetscScalar Eqp, Edp, delta; /* Generator variables */
848: PetscScalar Id, Iq; /* Generator dq axis currents */
849: PetscScalar Vd, Vq, IGr, IGi, Zdq_inv[4], det;
850: PetscScalar Xdp, Xqp, Rs; /* Generator parameters */
852: gen = (Gen *)(component);
853: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offsetgen));
855: /* Generator state variables */
856: Eqp = xarr[offsetgen];
857: Edp = xarr[offsetgen + 1];
858: delta = xarr[offsetgen + 2];
859: /* w = xarr[idx+3]; not being used */
860: Id = xarr[offsetgen + 4];
861: Iq = xarr[offsetgen + 5];
863: /* Generator parameters */
864: Xdp = gen->Xdp;
865: Xqp = gen->Xqp;
866: Rs = gen->Rs;
868: /* Set generator differential equation residual functions to zero */
869: farr[offsetgen] = 0;
870: farr[offsetgen + 1] = 0;
871: farr[offsetgen + 2] = 0;
872: farr[offsetgen + 3] = 0;
874: PetscCall(ri2dq(Vr, Vi, delta, &Vd, &Vq));
876: /* Algebraic equations for stator currents */
877: det = Rs * Rs + Xdp * Xqp;
879: Zdq_inv[0] = Rs / det;
880: Zdq_inv[1] = Xqp / det;
881: Zdq_inv[2] = -Xdp / det;
882: Zdq_inv[3] = Rs / det;
884: farr[offsetgen + 4] = Zdq_inv[0] * (-Edp + Vd) + Zdq_inv[1] * (-Eqp + Vq) + Id;
885: farr[offsetgen + 5] = Zdq_inv[2] * (-Edp + Vd) + Zdq_inv[3] * (-Eqp + Vq) + Iq;
887: /* Add generator current injection to network */
888: PetscCall(dq2ri(Id, Iq, delta, &IGr, &IGi));
890: farr[offsetbus] -= IGi;
891: farr[offsetbus + 1] -= IGr;
893: /* Vm = PetscSqrtScalar(Vd*Vd + Vq*Vq);*/ /* a compiler warning: "Value stored to 'Vm' is never read" - comment out by Hong Zhang */
894: }
895: } else if (key == 3) {
896: if (!ghostvtex) {
897: PetscInt offsetexc;
898: PetscCall(DMNetworkGetLocalVecOffset(networkdm, v, j, &offsetexc));
899: /* Set exciter differential equation residual functions equal to zero*/
900: farr[offsetexc] = 0;
901: farr[offsetexc + 1] = 0;
902: farr[offsetexc + 2] = 0;
903: }
904: } else if (key == 4) {
905: if (!ghostvtex) {
906: PetscInt k, ld_nsegsp, ld_nsegsq;
907: PetscScalar *ld_alphap, *ld_betap, *ld_alphaq, *ld_betaq, PD0, QD0, IDr, IDi;
909: load = (Load *)(component);
911: /* Load Parameters */
912: ld_nsegsp = load->ld_nsegsp;
913: ld_alphap = load->ld_alphap;
914: ld_betap = load->ld_betap;
915: ld_nsegsq = load->ld_nsegsq;
916: ld_alphaq = load->ld_alphaq;
917: ld_betaq = load->ld_betaq;
919: PD0 = load->PD0;
920: QD0 = load->QD0;
922: Vm = PetscSqrtScalar(Vr * Vr + Vi * Vi);
923: Vm2 = Vm * Vm;
924: Vm0 = PetscSqrtScalar(Vr0 * Vr0 + Vi0 * Vi0);
925: PD = QD = 0.0;
926: for (k = 0; k < ld_nsegsp; k++) PD += ld_alphap[k] * PD0 * PetscPowScalar((Vm / Vm0), ld_betap[k]);
927: for (k = 0; k < ld_nsegsq; k++) QD += ld_alphaq[k] * QD0 * PetscPowScalar((Vm / Vm0), ld_betaq[k]);
929: /* Load currents */
930: IDr = (PD * Vr + QD * Vi) / Vm2;
931: IDi = (-QD * Vr + PD * Vi) / Vm2;
933: farr[offsetbus] += IDi;
934: farr[offsetbus + 1] += IDr;
935: }
936: }
937: }
938: }
940: PetscCall(VecRestoreArrayRead(localX, &xarr));
941: PetscCall(VecRestoreArray(localF, &farr));
942: PetscCall(DMRestoreLocalVector(networkdm, &localX));
944: PetscCall(DMLocalToGlobalBegin(networkdm, localF, ADD_VALUES, F));
945: PetscCall(DMLocalToGlobalEnd(networkdm, localF, ADD_VALUES, F));
946: PetscCall(DMRestoreLocalVector(networkdm, &localF));
947: PetscFunctionReturn(PETSC_SUCCESS);
948: }
950: int main(int argc, char **argv)
951: {
952: PetscInt i, j, *edgelist = NULL, eStart, eEnd, vStart, vEnd;
953: PetscInt genj, excj, loadj, componentkey[5];
954: PetscInt nc = 1; /* No. of copies (default = 1) */
955: PetscMPIInt size, rank;
956: Vec X, F_alg;
957: TS ts;
958: SNES snes_alg, snes;
959: Bus *bus;
960: Branch *branch;
961: Gen *gen;
962: Exc *exc;
963: Load *load;
964: DM networkdm;
965: #if defined(PETSC_USE_LOG)
966: PetscLogStage stage1;
967: #endif
968: Userctx user;
969: KSP ksp;
970: PC pc;
971: PetscInt numEdges = 0;
973: PetscFunctionBeginUser;
974: PetscCall(PetscInitialize(&argc, &argv, "ex9busnetworkops", help));
975: PetscCall(PetscOptionsGetInt(NULL, NULL, "-nc", &nc, NULL));
976: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
977: PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
979: /* Read initial voltage vector and Ybus */
980: if (rank == 0) PetscCall(read_data(nc, &gen, &exc, &load, &bus, &branch, &edgelist));
982: PetscCall(DMNetworkCreate(PETSC_COMM_WORLD, &networkdm));
983: PetscCall(DMNetworkRegisterComponent(networkdm, "branchstruct", sizeof(Branch), &componentkey[0]));
984: PetscCall(DMNetworkRegisterComponent(networkdm, "busstruct", sizeof(Bus), &componentkey[1]));
985: PetscCall(DMNetworkRegisterComponent(networkdm, "genstruct", sizeof(Gen), &componentkey[2]));
986: PetscCall(DMNetworkRegisterComponent(networkdm, "excstruct", sizeof(Exc), &componentkey[3]));
987: PetscCall(DMNetworkRegisterComponent(networkdm, "loadstruct", sizeof(Load), &componentkey[4]));
989: PetscCall(PetscLogStageRegister("Create network", &stage1));
990: PetscCall(PetscLogStagePush(stage1));
992: /* Set local number of edges and edge connectivity */
993: if (rank == 0) numEdges = NBRANCH * nc + (nc - 1);
994: PetscCall(DMNetworkSetNumSubNetworks(networkdm, PETSC_DECIDE, 1));
995: PetscCall(DMNetworkAddSubnetwork(networkdm, NULL, numEdges, edgelist, NULL));
997: /* Set up the network layout */
998: PetscCall(DMNetworkLayoutSetUp(networkdm));
1000: if (rank == 0) PetscCall(PetscFree(edgelist));
1002: /* Add network components (physical parameters of nodes and branches) and number of variables */
1003: if (rank == 0) {
1004: PetscCall(DMNetworkGetEdgeRange(networkdm, &eStart, &eEnd));
1005: genj = 0;
1006: loadj = 0;
1007: excj = 0;
1008: for (i = eStart; i < eEnd; i++) PetscCall(DMNetworkAddComponent(networkdm, i, componentkey[0], &branch[i - eStart], 0));
1010: PetscCall(DMNetworkGetVertexRange(networkdm, &vStart, &vEnd));
1012: for (i = vStart; i < vEnd; i++) {
1013: PetscCall(DMNetworkAddComponent(networkdm, i, componentkey[1], &bus[i - vStart], 2));
1014: if (bus[i - vStart].nofgen) {
1015: for (j = 0; j < bus[i - vStart].nofgen; j++) {
1016: /* Add generator */
1017: PetscCall(DMNetworkAddComponent(networkdm, i, componentkey[2], &gen[genj++], 6));
1018: /* Add exciter */
1019: PetscCall(DMNetworkAddComponent(networkdm, i, componentkey[3], &exc[excj++], 3));
1020: }
1021: }
1022: if (bus[i - vStart].nofload) {
1023: for (j = 0; j < bus[i - vStart].nofload; j++) PetscCall(DMNetworkAddComponent(networkdm, i, componentkey[4], &load[loadj++], 0));
1024: }
1025: }
1026: }
1028: PetscCall(DMSetUp(networkdm));
1030: if (rank == 0) PetscCall(PetscFree5(bus, gen, load, branch, exc));
1032: /* for parallel options: Network partitioning and distribution of data */
1033: if (size > 1) PetscCall(DMNetworkDistribute(&networkdm, 0));
1034: PetscCall(PetscLogStagePop());
1036: PetscCall(DMCreateGlobalVector(networkdm, &X));
1038: PetscCall(SetInitialGuess(networkdm, X));
1040: /* Options for fault simulation */
1041: PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Transient stability fault options", "");
1042: user.tfaulton = 0.02;
1043: user.tfaultoff = 0.05;
1044: user.Rfault = 0.0001;
1045: user.faultbus = 8;
1046: PetscCall(PetscOptionsReal("-tfaulton", "", "", user.tfaulton, &user.tfaulton, NULL));
1047: PetscCall(PetscOptionsReal("-tfaultoff", "", "", user.tfaultoff, &user.tfaultoff, NULL));
1048: PetscCall(PetscOptionsInt("-faultbus", "", "", user.faultbus, &user.faultbus, NULL));
1049: user.t0 = 0.0;
1050: user.tmax = 0.1;
1051: PetscCall(PetscOptionsReal("-t0", "", "", user.t0, &user.t0, NULL));
1052: PetscCall(PetscOptionsReal("-tmax", "", "", user.tmax, &user.tmax, NULL));
1054: PetscCall(PetscMalloc1(18 * nc, &user.ybusfault));
1055: for (i = 0; i < 18 * nc; i++) user.ybusfault[i] = 0;
1056: user.ybusfault[user.faultbus * 2 + 1] = 1 / user.Rfault;
1057: PetscOptionsEnd();
1059: /* Setup TS solver */
1060: /*--------------------------------------------------------*/
1061: PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
1062: PetscCall(TSSetDM(ts, (DM)networkdm));
1063: PetscCall(TSSetType(ts, TSCN));
1065: PetscCall(TSGetSNES(ts, &snes));
1066: PetscCall(SNESGetKSP(snes, &ksp));
1067: PetscCall(KSPGetPC(ksp, &pc));
1068: PetscCall(PCSetType(pc, PCBJACOBI));
1070: PetscCall(TSSetIFunction(ts, NULL, (TSIFunction)FormIFunction, &user));
1071: PetscCall(TSSetMaxTime(ts, user.tfaulton));
1072: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
1073: PetscCall(TSSetTimeStep(ts, 0.01));
1074: PetscCall(TSSetFromOptions(ts));
1076: /*user.alg_flg = PETSC_TRUE is the period when fault exists. We add fault admittance to Ybus matrix.
1077: eg, fault bus is 8. Y88(new)=Y88(old)+Yfault. */
1078: user.alg_flg = PETSC_FALSE;
1080: /* Prefault period */
1081: if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "... (1) Prefault period ... \n"));
1083: PetscCall(TSSetSolution(ts, X));
1084: PetscCall(TSSetUp(ts));
1085: PetscCall(TSSolve(ts, X));
1087: /* Create the nonlinear solver for solving the algebraic system */
1088: PetscCall(VecDuplicate(X, &F_alg));
1090: PetscCall(SNESCreate(PETSC_COMM_WORLD, &snes_alg));
1091: PetscCall(SNESSetDM(snes_alg, (DM)networkdm));
1092: PetscCall(SNESSetFunction(snes_alg, F_alg, AlgFunction, &user));
1093: PetscCall(SNESSetOptionsPrefix(snes_alg, "alg_"));
1094: PetscCall(SNESSetFromOptions(snes_alg));
1096: /* Apply disturbance - resistive fault at user.faultbus */
1097: /* This is done by adding shunt conductance to the diagonal location
1098: in the Ybus matrix */
1099: user.alg_flg = PETSC_TRUE;
1101: /* Solve the algebraic equations */
1102: if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n... (2) Apply disturbance, solve algebraic equations ... \n"));
1103: PetscCall(SNESSolve(snes_alg, NULL, X));
1105: /* Disturbance period */
1106: PetscCall(TSSetTime(ts, user.tfaulton));
1107: PetscCall(TSSetMaxTime(ts, user.tfaultoff));
1108: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
1109: PetscCall(TSSetIFunction(ts, NULL, (TSIFunction)FormIFunction, &user));
1111: user.alg_flg = PETSC_TRUE;
1112: if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n... (3) Disturbance period ... \n"));
1113: PetscCall(TSSolve(ts, X));
1115: /* Remove the fault */
1116: PetscCall(SNESSetFunction(snes_alg, F_alg, AlgFunction, &user));
1118: user.alg_flg = PETSC_FALSE;
1119: /* Solve the algebraic equations */
1120: if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n... (4) Remove fault, solve algebraic equations ... \n"));
1121: PetscCall(SNESSolve(snes_alg, NULL, X));
1122: PetscCall(SNESDestroy(&snes_alg));
1124: /* Post-disturbance period */
1125: PetscCall(TSSetTime(ts, user.tfaultoff));
1126: PetscCall(TSSetMaxTime(ts, user.tmax));
1127: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
1128: PetscCall(TSSetIFunction(ts, NULL, (TSIFunction)FormIFunction, &user));
1130: user.alg_flg = PETSC_FALSE;
1131: if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "\n... (5) Post-disturbance period ... \n"));
1132: PetscCall(TSSolve(ts, X));
1134: PetscCall(PetscFree(user.ybusfault));
1135: PetscCall(VecDestroy(&F_alg));
1136: PetscCall(VecDestroy(&X));
1137: PetscCall(DMDestroy(&networkdm));
1138: PetscCall(TSDestroy(&ts));
1139: PetscCall(PetscFinalize());
1140: return 0;
1141: }
1143: /*TEST
1145: build:
1146: requires: double !complex !defined(PETSC_USE_64BIT_INDICES)
1148: test:
1149: args: -ts_monitor -snes_converged_reason -alg_snes_converged_reason
1150: localrunfiles: X.bin Ybus.bin ex9busnetworkops
1152: test:
1153: suffix: 2
1154: nsize: 2
1155: args: -ts_monitor -snes_converged_reason -alg_snes_converged_reason
1156: localrunfiles: X.bin Ybus.bin ex9busnetworkops
1158: TEST*/