Actual source code: ex3.c
2: static char help[] = "Solves a simple time-dependent linear PDE (the heat equation).\n\
3: Input parameters include:\n\
4: -m <points>, where <points> = number of grid points\n\
5: -time_dependent_rhs : Treat the problem as having a time-dependent right-hand side\n\
6: -use_ifunc : Use IFunction/IJacobian interface\n\
7: -debug : Activate debugging printouts\n\
8: -nox : Deactivate x-window graphics\n\n";
10: /* ------------------------------------------------------------------------
12: This program solves the one-dimensional heat equation (also called the
13: diffusion equation),
14: u_t = u_xx,
15: on the domain 0 <= x <= 1, with the boundary conditions
16: u(t,0) = 0, u(t,1) = 0,
17: and the initial condition
18: u(0,x) = sin(6*pi*x) + 3*sin(2*pi*x).
19: This is a linear, second-order, parabolic equation.
21: We discretize the right-hand side using finite differences with
22: uniform grid spacing h:
23: u_xx = (u_{i+1} - 2u_{i} + u_{i-1})/(h^2)
24: We then demonstrate time evolution using the various TS methods by
25: running the program via
26: ex3 -ts_type <timestepping solver>
28: We compare the approximate solution with the exact solution, given by
29: u_exact(x,t) = exp(-36*pi*pi*t) * sin(6*pi*x) +
30: 3*exp(-4*pi*pi*t) * sin(2*pi*x)
32: Notes:
33: This code demonstrates the TS solver interface to two variants of
34: linear problems, u_t = f(u,t), namely
35: - time-dependent f: f(u,t) is a function of t
36: - time-independent f: f(u,t) is simply f(u)
38: The parallel version of this code is ts/tutorials/ex4.c
40: ------------------------------------------------------------------------- */
42: /*
43: Include "petscts.h" so that we can use TS solvers. Note that this file
44: automatically includes:
45: petscsys.h - base PETSc routines petscvec.h - vectors
46: petscmat.h - matrices
47: petscis.h - index sets petscksp.h - Krylov subspace methods
48: petscviewer.h - viewers petscpc.h - preconditioners
49: petscksp.h - linear solvers petscsnes.h - nonlinear solvers
50: */
52: #include <petscts.h>
53: #include <petscdraw.h>
55: /*
56: User-defined application context - contains data needed by the
57: application-provided call-back routines.
58: */
59: typedef struct {
60: Vec solution; /* global exact solution vector */
61: PetscInt m; /* total number of grid points */
62: PetscReal h; /* mesh width h = 1/(m-1) */
63: PetscBool debug; /* flag (1 indicates activation of debugging printouts) */
64: PetscViewer viewer1, viewer2; /* viewers for the solution and error */
65: PetscReal norm_2, norm_max; /* error norms */
66: Mat A; /* RHS mat, used with IFunction interface */
67: PetscReal oshift; /* old shift applied, prevent to recompute the IJacobian */
68: } AppCtx;
70: /*
71: User-defined routines
72: */
73: extern PetscErrorCode InitialConditions(Vec, AppCtx *);
74: extern PetscErrorCode RHSMatrixHeat(TS, PetscReal, Vec, Mat, Mat, void *);
75: extern PetscErrorCode IFunctionHeat(TS, PetscReal, Vec, Vec, Vec, void *);
76: extern PetscErrorCode IJacobianHeat(TS, PetscReal, Vec, Vec, PetscReal, Mat, Mat, void *);
77: extern PetscErrorCode Monitor(TS, PetscInt, PetscReal, Vec, void *);
78: extern PetscErrorCode ExactSolution(PetscReal, Vec, AppCtx *);
80: int main(int argc, char **argv)
81: {
82: AppCtx appctx; /* user-defined application context */
83: TS ts; /* timestepping context */
84: Mat A; /* matrix data structure */
85: Vec u; /* approximate solution vector */
86: PetscReal time_total_max = 100.0; /* default max total time */
87: PetscInt time_steps_max = 100; /* default max timesteps */
88: PetscDraw draw; /* drawing context */
89: PetscInt steps, m;
90: PetscMPIInt size;
91: PetscReal dt;
92: PetscBool flg, flg_string;
94: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
95: Initialize program and set problem parameters
96: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
98: PetscFunctionBeginUser;
99: PetscCall(PetscInitialize(&argc, &argv, (char *)0, help));
100: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
101: PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "This is a uniprocessor example only!");
103: m = 60;
104: PetscCall(PetscOptionsGetInt(NULL, NULL, "-m", &m, NULL));
105: PetscCall(PetscOptionsHasName(NULL, NULL, "-debug", &appctx.debug));
106: flg_string = PETSC_FALSE;
107: PetscCall(PetscOptionsGetBool(NULL, NULL, "-test_string_viewer", &flg_string, NULL));
109: appctx.m = m;
110: appctx.h = 1.0 / (m - 1.0);
111: appctx.norm_2 = 0.0;
112: appctx.norm_max = 0.0;
114: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Solving a linear TS problem on 1 processor\n"));
116: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
117: Create vector data structures
118: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
120: /*
121: Create vector data structures for approximate and exact solutions
122: */
123: PetscCall(VecCreateSeq(PETSC_COMM_SELF, m, &u));
124: PetscCall(VecDuplicate(u, &appctx.solution));
126: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
127: Set up displays to show graphs of the solution and error
128: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
130: PetscCall(PetscViewerDrawOpen(PETSC_COMM_SELF, 0, "", 80, 380, 400, 160, &appctx.viewer1));
131: PetscCall(PetscViewerDrawGetDraw(appctx.viewer1, 0, &draw));
132: PetscCall(PetscDrawSetDoubleBuffer(draw));
133: PetscCall(PetscViewerDrawOpen(PETSC_COMM_SELF, 0, "", 80, 0, 400, 160, &appctx.viewer2));
134: PetscCall(PetscViewerDrawGetDraw(appctx.viewer2, 0, &draw));
135: PetscCall(PetscDrawSetDoubleBuffer(draw));
137: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
138: Create timestepping solver context
139: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
141: PetscCall(TSCreate(PETSC_COMM_SELF, &ts));
142: PetscCall(TSSetProblemType(ts, TS_LINEAR));
144: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
145: Set optional user-defined monitoring routine
146: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
148: if (!flg_string) PetscCall(TSMonitorSet(ts, Monitor, &appctx, NULL));
150: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
152: Create matrix data structure; set matrix evaluation routine.
153: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
155: PetscCall(MatCreate(PETSC_COMM_SELF, &A));
156: PetscCall(MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, m, m));
157: PetscCall(MatSetFromOptions(A));
158: PetscCall(MatSetUp(A));
160: flg = PETSC_FALSE;
161: PetscCall(PetscOptionsGetBool(NULL, NULL, "-use_ifunc", &flg, NULL));
162: if (!flg) {
163: appctx.A = NULL;
164: PetscCall(PetscOptionsGetBool(NULL, NULL, "-time_dependent_rhs", &flg, NULL));
165: if (flg) {
166: /*
167: For linear problems with a time-dependent f(u,t) in the equation
168: u_t = f(u,t), the user provides the discretized right-hand-side
169: as a time-dependent matrix.
170: */
171: PetscCall(TSSetRHSFunction(ts, NULL, TSComputeRHSFunctionLinear, &appctx));
172: PetscCall(TSSetRHSJacobian(ts, A, A, RHSMatrixHeat, &appctx));
173: } else {
174: /*
175: For linear problems with a time-independent f(u) in the equation
176: u_t = f(u), the user provides the discretized right-hand-side
177: as a matrix only once, and then sets the special Jacobian evaluation
178: routine TSComputeRHSJacobianConstant() which will NOT recompute the Jacobian.
179: */
180: PetscCall(RHSMatrixHeat(ts, 0.0, u, A, A, &appctx));
181: PetscCall(TSSetRHSFunction(ts, NULL, TSComputeRHSFunctionLinear, &appctx));
182: PetscCall(TSSetRHSJacobian(ts, A, A, TSComputeRHSJacobianConstant, &appctx));
183: }
184: } else {
185: Mat J;
187: PetscCall(RHSMatrixHeat(ts, 0.0, u, A, A, &appctx));
188: PetscCall(MatDuplicate(A, MAT_DO_NOT_COPY_VALUES, &J));
189: PetscCall(TSSetIFunction(ts, NULL, IFunctionHeat, &appctx));
190: PetscCall(TSSetIJacobian(ts, J, J, IJacobianHeat, &appctx));
191: PetscCall(MatDestroy(&J));
193: PetscCall(PetscObjectReference((PetscObject)A));
194: appctx.A = A;
195: appctx.oshift = PETSC_MIN_REAL;
196: }
197: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
198: Set solution vector and initial timestep
199: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
201: dt = appctx.h * appctx.h / 2.0;
202: PetscCall(TSSetTimeStep(ts, dt));
204: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
205: Customize timestepping solver:
206: - Set the solution method to be the Backward Euler method.
207: - Set timestepping duration info
208: Then set runtime options, which can override these defaults.
209: For example,
210: -ts_max_steps <maxsteps> -ts_max_time <maxtime>
211: to override the defaults set by TSSetMaxSteps()/TSSetMaxTime().
212: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
214: PetscCall(TSSetMaxSteps(ts, time_steps_max));
215: PetscCall(TSSetMaxTime(ts, time_total_max));
216: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
217: PetscCall(TSSetFromOptions(ts));
219: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
220: Solve the problem
221: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
223: /*
224: Evaluate initial conditions
225: */
226: PetscCall(InitialConditions(u, &appctx));
228: /*
229: Run the timestepping solver
230: */
231: PetscCall(TSSolve(ts, u));
232: PetscCall(TSGetStepNumber(ts, &steps));
234: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
235: View timestepping solver info
236: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
238: PetscCall(PetscPrintf(PETSC_COMM_SELF, "avg. error (2 norm) = %g, avg. error (max norm) = %g\n", (double)(appctx.norm_2 / steps), (double)(appctx.norm_max / steps)));
239: if (!flg_string) {
240: PetscCall(TSView(ts, PETSC_VIEWER_STDOUT_SELF));
241: } else {
242: PetscViewer stringviewer;
243: char string[512];
244: const char *outstring;
246: PetscCall(PetscViewerStringOpen(PETSC_COMM_WORLD, string, sizeof(string), &stringviewer));
247: PetscCall(TSView(ts, stringviewer));
248: PetscCall(PetscViewerStringGetStringRead(stringviewer, &outstring, NULL));
249: PetscCheck((char *)outstring == (char *)string, PETSC_COMM_WORLD, PETSC_ERR_PLIB, "String returned from viewer does not equal original string");
250: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Output from string viewer:%s\n", outstring));
251: PetscCall(PetscViewerDestroy(&stringviewer));
252: }
254: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
255: Free work space. All PETSc objects should be destroyed when they
256: are no longer needed.
257: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
259: PetscCall(TSDestroy(&ts));
260: PetscCall(MatDestroy(&A));
261: PetscCall(VecDestroy(&u));
262: PetscCall(PetscViewerDestroy(&appctx.viewer1));
263: PetscCall(PetscViewerDestroy(&appctx.viewer2));
264: PetscCall(VecDestroy(&appctx.solution));
265: PetscCall(MatDestroy(&appctx.A));
267: /*
268: Always call PetscFinalize() before exiting a program. This routine
269: - finalizes the PETSc libraries as well as MPI
270: - provides summary and diagnostic information if certain runtime
271: options are chosen (e.g., -log_view).
272: */
273: PetscCall(PetscFinalize());
274: return 0;
275: }
276: /* --------------------------------------------------------------------- */
277: /*
278: InitialConditions - Computes the solution at the initial time.
280: Input Parameter:
281: u - uninitialized solution vector (global)
282: appctx - user-defined application context
284: Output Parameter:
285: u - vector with solution at initial time (global)
286: */
287: PetscErrorCode InitialConditions(Vec u, AppCtx *appctx)
288: {
289: PetscScalar *u_localptr, h = appctx->h;
290: PetscInt i;
292: PetscFunctionBeginUser;
293: /*
294: Get a pointer to vector data.
295: - For default PETSc vectors, VecGetArray() returns a pointer to
296: the data array. Otherwise, the routine is implementation dependent.
297: - You MUST call VecRestoreArray() when you no longer need access to
298: the array.
299: - Note that the Fortran interface to VecGetArray() differs from the
300: C version. See the users manual for details.
301: */
302: PetscCall(VecGetArrayWrite(u, &u_localptr));
304: /*
305: We initialize the solution array by simply writing the solution
306: directly into the array locations. Alternatively, we could use
307: VecSetValues() or VecSetValuesLocal().
308: */
309: for (i = 0; i < appctx->m; i++) u_localptr[i] = PetscSinScalar(PETSC_PI * i * 6. * h) + 3. * PetscSinScalar(PETSC_PI * i * 2. * h);
311: /*
312: Restore vector
313: */
314: PetscCall(VecRestoreArrayWrite(u, &u_localptr));
316: /*
317: Print debugging information if desired
318: */
319: if (appctx->debug) {
320: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Initial guess vector\n"));
321: PetscCall(VecView(u, PETSC_VIEWER_STDOUT_SELF));
322: }
324: PetscFunctionReturn(PETSC_SUCCESS);
325: }
326: /* --------------------------------------------------------------------- */
327: /*
328: ExactSolution - Computes the exact solution at a given time.
330: Input Parameters:
331: t - current time
332: solution - vector in which exact solution will be computed
333: appctx - user-defined application context
335: Output Parameter:
336: solution - vector with the newly computed exact solution
337: */
338: PetscErrorCode ExactSolution(PetscReal t, Vec solution, AppCtx *appctx)
339: {
340: PetscScalar *s_localptr, h = appctx->h, ex1, ex2, sc1, sc2, tc = t;
341: PetscInt i;
343: PetscFunctionBeginUser;
344: /*
345: Get a pointer to vector data.
346: */
347: PetscCall(VecGetArrayWrite(solution, &s_localptr));
349: /*
350: Simply write the solution directly into the array locations.
351: Alternatively, we culd use VecSetValues() or VecSetValuesLocal().
352: */
353: ex1 = PetscExpScalar(-36. * PETSC_PI * PETSC_PI * tc);
354: ex2 = PetscExpScalar(-4. * PETSC_PI * PETSC_PI * tc);
355: sc1 = PETSC_PI * 6. * h;
356: sc2 = PETSC_PI * 2. * h;
357: for (i = 0; i < appctx->m; i++) s_localptr[i] = PetscSinScalar(sc1 * (PetscReal)i) * ex1 + 3. * PetscSinScalar(sc2 * (PetscReal)i) * ex2;
359: /*
360: Restore vector
361: */
362: PetscCall(VecRestoreArrayWrite(solution, &s_localptr));
363: PetscFunctionReturn(PETSC_SUCCESS);
364: }
365: /* --------------------------------------------------------------------- */
366: /*
367: Monitor - User-provided routine to monitor the solution computed at
368: each timestep. This example plots the solution and computes the
369: error in two different norms.
371: This example also demonstrates changing the timestep via TSSetTimeStep().
373: Input Parameters:
374: ts - the timestep context
375: step - the count of the current step (with 0 meaning the
376: initial condition)
377: time - the current time
378: u - the solution at this timestep
379: ctx - the user-provided context for this monitoring routine.
380: In this case we use the application context which contains
381: information about the problem size, workspace and the exact
382: solution.
383: */
384: PetscErrorCode Monitor(TS ts, PetscInt step, PetscReal time, Vec u, void *ctx)
385: {
386: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
387: PetscReal norm_2, norm_max, dt, dttol;
389: PetscFunctionBeginUser;
390: /*
391: View a graph of the current iterate
392: */
393: PetscCall(VecView(u, appctx->viewer2));
395: /*
396: Compute the exact solution
397: */
398: PetscCall(ExactSolution(time, appctx->solution, appctx));
400: /*
401: Print debugging information if desired
402: */
403: if (appctx->debug) {
404: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Computed solution vector\n"));
405: PetscCall(VecView(u, PETSC_VIEWER_STDOUT_SELF));
406: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Exact solution vector\n"));
407: PetscCall(VecView(appctx->solution, PETSC_VIEWER_STDOUT_SELF));
408: }
410: /*
411: Compute the 2-norm and max-norm of the error
412: */
413: PetscCall(VecAXPY(appctx->solution, -1.0, u));
414: PetscCall(VecNorm(appctx->solution, NORM_2, &norm_2));
415: norm_2 = PetscSqrtReal(appctx->h) * norm_2;
416: PetscCall(VecNorm(appctx->solution, NORM_MAX, &norm_max));
418: PetscCall(TSGetTimeStep(ts, &dt));
419: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "Timestep %3" PetscInt_FMT ": step size = %g, time = %g, 2-norm error = %g, max norm error = %g\n", step, (double)dt, (double)time, (double)norm_2, (double)norm_max));
421: appctx->norm_2 += norm_2;
422: appctx->norm_max += norm_max;
424: dttol = .0001;
425: PetscCall(PetscOptionsGetReal(NULL, NULL, "-dttol", &dttol, NULL));
426: if (dt < dttol) {
427: dt *= .999;
428: PetscCall(TSSetTimeStep(ts, dt));
429: }
431: /*
432: View a graph of the error
433: */
434: PetscCall(VecView(appctx->solution, appctx->viewer1));
436: /*
437: Print debugging information if desired
438: */
439: if (appctx->debug) {
440: PetscCall(PetscPrintf(PETSC_COMM_SELF, "Error vector\n"));
441: PetscCall(VecView(appctx->solution, PETSC_VIEWER_STDOUT_SELF));
442: }
444: PetscFunctionReturn(PETSC_SUCCESS);
445: }
446: /* --------------------------------------------------------------------- */
447: /*
448: RHSMatrixHeat - User-provided routine to compute the right-hand-side
449: matrix for the heat equation.
451: Input Parameters:
452: ts - the TS context
453: t - current time
454: global_in - global input vector
455: dummy - optional user-defined context, as set by TSetRHSJacobian()
457: Output Parameters:
458: AA - Jacobian matrix
459: BB - optionally different preconditioning matrix
460: str - flag indicating matrix structure
462: Notes:
463: Recall that MatSetValues() uses 0-based row and column numbers
464: in Fortran as well as in C.
465: */
466: PetscErrorCode RHSMatrixHeat(TS ts, PetscReal t, Vec X, Mat AA, Mat BB, void *ctx)
467: {
468: Mat A = AA; /* Jacobian matrix */
469: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
470: PetscInt mstart = 0;
471: PetscInt mend = appctx->m;
472: PetscInt i, idx[3];
473: PetscScalar v[3], stwo = -2. / (appctx->h * appctx->h), sone = -.5 * stwo;
475: PetscFunctionBeginUser;
476: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
477: Compute entries for the locally owned part of the matrix
478: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
479: /*
480: Set matrix rows corresponding to boundary data
481: */
483: mstart = 0;
484: v[0] = 1.0;
485: PetscCall(MatSetValues(A, 1, &mstart, 1, &mstart, v, INSERT_VALUES));
486: mstart++;
488: mend--;
489: v[0] = 1.0;
490: PetscCall(MatSetValues(A, 1, &mend, 1, &mend, v, INSERT_VALUES));
492: /*
493: Set matrix rows corresponding to interior data. We construct the
494: matrix one row at a time.
495: */
496: v[0] = sone;
497: v[1] = stwo;
498: v[2] = sone;
499: for (i = mstart; i < mend; i++) {
500: idx[0] = i - 1;
501: idx[1] = i;
502: idx[2] = i + 1;
503: PetscCall(MatSetValues(A, 1, &i, 3, idx, v, INSERT_VALUES));
504: }
506: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
507: Complete the matrix assembly process and set some options
508: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
509: /*
510: Assemble matrix, using the 2-step process:
511: MatAssemblyBegin(), MatAssemblyEnd()
512: Computations can be done while messages are in transition
513: by placing code between these two statements.
514: */
515: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
516: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
518: /*
519: Set and option to indicate that we will never add a new nonzero location
520: to the matrix. If we do, it will generate an error.
521: */
522: PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
524: PetscFunctionReturn(PETSC_SUCCESS);
525: }
527: PetscErrorCode IFunctionHeat(TS ts, PetscReal t, Vec X, Vec Xdot, Vec r, void *ctx)
528: {
529: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
531: PetscFunctionBeginUser;
532: PetscCall(MatMult(appctx->A, X, r));
533: PetscCall(VecAYPX(r, -1.0, Xdot));
534: PetscFunctionReturn(PETSC_SUCCESS);
535: }
537: PetscErrorCode IJacobianHeat(TS ts, PetscReal t, Vec X, Vec Xdot, PetscReal s, Mat A, Mat B, void *ctx)
538: {
539: AppCtx *appctx = (AppCtx *)ctx; /* user-defined application context */
541: PetscFunctionBeginUser;
542: if (appctx->oshift == s) PetscFunctionReturn(PETSC_SUCCESS);
543: PetscCall(MatCopy(appctx->A, A, SAME_NONZERO_PATTERN));
544: PetscCall(MatScale(A, -1));
545: PetscCall(MatShift(A, s));
546: PetscCall(MatCopy(A, B, SAME_NONZERO_PATTERN));
547: appctx->oshift = s;
548: PetscFunctionReturn(PETSC_SUCCESS);
549: }
551: /*TEST
553: test:
554: args: -nox -ts_type ssp -ts_dt 0.0005
556: test:
557: suffix: 2
558: args: -nox -ts_type ssp -ts_dt 0.0005 -time_dependent_rhs 1
560: test:
561: suffix: 3
562: args: -nox -ts_type rosw -ts_max_steps 3 -ksp_converged_reason
563: filter: sed "s/ATOL/RTOL/g"
564: requires: !single
566: test:
567: suffix: 4
568: args: -nox -ts_type beuler -ts_max_steps 3 -ksp_converged_reason
569: filter: sed "s/ATOL/RTOL/g"
571: test:
572: suffix: 5
573: args: -nox -ts_type beuler -ts_max_steps 3 -ksp_converged_reason -time_dependent_rhs
574: filter: sed "s/ATOL/RTOL/g"
576: test:
577: requires: !single
578: suffix: pod_guess
579: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type pod -pc_type none -ksp_converged_reason
581: test:
582: requires: !single
583: suffix: pod_guess_Ainner
584: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type pod -ksp_guess_pod_Ainner -pc_type none -ksp_converged_reason
586: test:
587: requires: !single
588: suffix: fischer_guess
589: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -pc_type none -ksp_converged_reason
591: test:
592: requires: !single
593: suffix: fischer_guess_2
594: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -ksp_guess_fischer_model 2,10 -pc_type none -ksp_converged_reason
596: test:
597: requires: !single
598: suffix: fischer_guess_3
599: args: -nox -ts_type beuler -use_ifunc -ts_dt 0.0005 -ksp_guess_type fischer -ksp_guess_fischer_model 3,10 -pc_type none -ksp_converged_reason
601: test:
602: requires: !single
603: suffix: stringview
604: args: -nox -ts_type rosw -test_string_viewer
606: test:
607: requires: !single
608: suffix: stringview_euler
609: args: -nox -ts_type euler -test_string_viewer
611: TEST*/