Actual source code: fe.c
1: /* Basis Jet Tabulation
3: We would like to tabulate the nodal basis functions and derivatives at a set of points, usually quadrature points. We
4: follow here the derviation in http://www.math.ttu.edu/~kirby/papers/fiat-toms-2004.pdf. The nodal basis $\psi_i$ can
5: be expressed in terms of a prime basis $\phi_i$ which can be stably evaluated. In PETSc, we will use the Legendre basis
6: as a prime basis.
8: \psi_i = \sum_k \alpha_{ki} \phi_k
10: Our nodal basis is defined in terms of the dual basis $n_j$
12: n_j \cdot \psi_i = \delta_{ji}
14: and we may act on the first equation to obtain
16: n_j \cdot \psi_i = \sum_k \alpha_{ki} n_j \cdot \phi_k
17: \delta_{ji} = \sum_k \alpha_{ki} V_{jk}
18: I = V \alpha
20: so the coefficients of the nodal basis in the prime basis are
22: \alpha = V^{-1}
24: We will define the dual basis vectors $n_j$ using a quadrature rule.
26: Right now, we will just use the polynomial spaces P^k. I know some elements use the space of symmetric polynomials
27: (I think Nedelec), but we will neglect this for now. Constraints in the space, e.g. Arnold-Winther elements, can
28: be implemented exactly as in FIAT using functionals $L_j$.
30: I will have to count the degrees correctly for the Legendre product when we are on simplices.
32: We will have three objects:
33: - Space, P: this just need point evaluation I think
34: - Dual Space, P'+K: This looks like a set of functionals that can act on members of P, each n is defined by a Q
35: - FEM: This keeps {P, P', Q}
36: */
37: #include <petsc/private/petscfeimpl.h>
38: #include <petscdmplex.h>
40: PetscBool FEcite = PETSC_FALSE;
41: const char FECitation[] = "@article{kirby2004,\n"
42: " title = {Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis Functions},\n"
43: " journal = {ACM Transactions on Mathematical Software},\n"
44: " author = {Robert C. Kirby},\n"
45: " volume = {30},\n"
46: " number = {4},\n"
47: " pages = {502--516},\n"
48: " doi = {10.1145/1039813.1039820},\n"
49: " year = {2004}\n}\n";
51: PetscClassId PETSCFE_CLASSID = 0;
53: PetscLogEvent PETSCFE_SetUp;
55: PetscFunctionList PetscFEList = NULL;
56: PetscBool PetscFERegisterAllCalled = PETSC_FALSE;
58: /*@C
59: PetscFERegister - Adds a new `PetscFEType`
61: Not Collective
63: Input Parameters:
64: + sname - The name of a new user-defined creation routine
65: - function - The creation routine
67: Sample usage:
68: .vb
69: PetscFERegister("my_fe", MyPetscFECreate);
70: .ve
72: Then, your PetscFE type can be chosen with the procedural interface via
73: .vb
74: PetscFECreate(MPI_Comm, PetscFE *);
75: PetscFESetType(PetscFE, "my_fe");
76: .ve
77: or at runtime via the option
78: .vb
79: -petscfe_type my_fe
80: .ve
82: Level: advanced
84: Note:
85: `PetscFERegister()` may be called multiple times to add several user-defined `PetscFE`s
87: .seealso: `PetscFE`, `PetscFEType`, `PetscFERegisterAll()`, `PetscFERegisterDestroy()`
88: @*/
89: PetscErrorCode PetscFERegister(const char sname[], PetscErrorCode (*function)(PetscFE))
90: {
91: PetscFunctionBegin;
92: PetscCall(PetscFunctionListAdd(&PetscFEList, sname, function));
93: PetscFunctionReturn(PETSC_SUCCESS);
94: }
96: /*@C
97: PetscFESetType - Builds a particular `PetscFE`
99: Collective
101: Input Parameters:
102: + fem - The `PetscFE` object
103: - name - The kind of FEM space
105: Options Database Key:
106: . -petscfe_type <type> - Sets the `PetscFE` type; use -help for a list of available types
108: Level: intermediate
110: .seealso: `PetscFEType`, `PetscFE`, `PetscFEGetType()`, `PetscFECreate()`
111: @*/
112: PetscErrorCode PetscFESetType(PetscFE fem, PetscFEType name)
113: {
114: PetscErrorCode (*r)(PetscFE);
115: PetscBool match;
117: PetscFunctionBegin;
119: PetscCall(PetscObjectTypeCompare((PetscObject)fem, name, &match));
120: if (match) PetscFunctionReturn(PETSC_SUCCESS);
122: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
123: PetscCall(PetscFunctionListFind(PetscFEList, name, &r));
124: PetscCheck(r, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscFE type: %s", name);
126: PetscTryTypeMethod(fem, destroy);
127: fem->ops->destroy = NULL;
129: PetscCall((*r)(fem));
130: PetscCall(PetscObjectChangeTypeName((PetscObject)fem, name));
131: PetscFunctionReturn(PETSC_SUCCESS);
132: }
134: /*@C
135: PetscFEGetType - Gets the `PetscFEType` (as a string) from the `PetscFE` object.
137: Not Collective
139: Input Parameter:
140: . fem - The `PetscFE`
142: Output Parameter:
143: . name - The `PetscFEType` name
145: Level: intermediate
147: .seealso: `PetscFEType`, `PetscFE`, `PetscFESetType()`, `PetscFECreate()`
148: @*/
149: PetscErrorCode PetscFEGetType(PetscFE fem, PetscFEType *name)
150: {
151: PetscFunctionBegin;
154: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
155: *name = ((PetscObject)fem)->type_name;
156: PetscFunctionReturn(PETSC_SUCCESS);
157: }
159: /*@C
160: PetscFEViewFromOptions - View from a `PetscFE` based on values in the options database
162: Collective
164: Input Parameters:
165: + A - the `PetscFE` object
166: . obj - Optional object that provides the options prefix
167: - name - command line option name
169: Level: intermediate
171: .seealso: `PetscFE`, `PetscFEView()`, `PetscObjectViewFromOptions()`, `PetscFECreate()`
172: @*/
173: PetscErrorCode PetscFEViewFromOptions(PetscFE A, PetscObject obj, const char name[])
174: {
175: PetscFunctionBegin;
177: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
178: PetscFunctionReturn(PETSC_SUCCESS);
179: }
181: /*@C
182: PetscFEView - Views a `PetscFE`
184: Collective
186: Input Parameters:
187: + fem - the `PetscFE` object to view
188: - viewer - the viewer
190: Level: beginner
192: .seealso: `PetscFE`, `PetscViewer`, `PetscFEDestroy()`, `PetscFEViewFromOptions()`
193: @*/
194: PetscErrorCode PetscFEView(PetscFE fem, PetscViewer viewer)
195: {
196: PetscBool iascii;
198: PetscFunctionBegin;
201: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)fem), &viewer));
202: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)fem, viewer));
203: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
204: PetscTryTypeMethod(fem, view, viewer);
205: PetscFunctionReturn(PETSC_SUCCESS);
206: }
208: /*@
209: PetscFESetFromOptions - sets parameters in a `PetscFE` from the options database
211: Collective
213: Input Parameter:
214: . fem - the `PetscFE` object to set options for
216: Options Database Keys:
217: + -petscfe_num_blocks - the number of cell blocks to integrate concurrently
218: - -petscfe_num_batches - the number of cell batches to integrate serially
220: Level: intermediate
222: .seealso: `PetscFEV`, `PetscFEView()`
223: @*/
224: PetscErrorCode PetscFESetFromOptions(PetscFE fem)
225: {
226: const char *defaultType;
227: char name[256];
228: PetscBool flg;
230: PetscFunctionBegin;
232: if (!((PetscObject)fem)->type_name) {
233: defaultType = PETSCFEBASIC;
234: } else {
235: defaultType = ((PetscObject)fem)->type_name;
236: }
237: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
239: PetscObjectOptionsBegin((PetscObject)fem);
240: PetscCall(PetscOptionsFList("-petscfe_type", "Finite element space", "PetscFESetType", PetscFEList, defaultType, name, 256, &flg));
241: if (flg) {
242: PetscCall(PetscFESetType(fem, name));
243: } else if (!((PetscObject)fem)->type_name) {
244: PetscCall(PetscFESetType(fem, defaultType));
245: }
246: PetscCall(PetscOptionsBoundedInt("-petscfe_num_blocks", "The number of cell blocks to integrate concurrently", "PetscSpaceSetTileSizes", fem->numBlocks, &fem->numBlocks, NULL, 1));
247: PetscCall(PetscOptionsBoundedInt("-petscfe_num_batches", "The number of cell batches to integrate serially", "PetscSpaceSetTileSizes", fem->numBatches, &fem->numBatches, NULL, 1));
248: PetscTryTypeMethod(fem, setfromoptions, PetscOptionsObject);
249: /* process any options handlers added with PetscObjectAddOptionsHandler() */
250: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)fem, PetscOptionsObject));
251: PetscOptionsEnd();
252: PetscCall(PetscFEViewFromOptions(fem, NULL, "-petscfe_view"));
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: /*@C
257: PetscFESetUp - Construct data structures for the `PetscFE` after the `PetscFEType` has been set
259: Collective
261: Input Parameter:
262: . fem - the `PetscFE` object to setup
264: Level: intermediate
266: .seealso: `PetscFE`, `PetscFEView()`, `PetscFEDestroy()`
267: @*/
268: PetscErrorCode PetscFESetUp(PetscFE fem)
269: {
270: PetscFunctionBegin;
272: if (fem->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
273: PetscCall(PetscLogEventBegin(PETSCFE_SetUp, fem, 0, 0, 0));
274: fem->setupcalled = PETSC_TRUE;
275: PetscTryTypeMethod(fem, setup);
276: PetscCall(PetscLogEventEnd(PETSCFE_SetUp, fem, 0, 0, 0));
277: PetscFunctionReturn(PETSC_SUCCESS);
278: }
280: /*@
281: PetscFEDestroy - Destroys a `PetscFE` object
283: Collective
285: Input Parameter:
286: . fem - the `PetscFE` object to destroy
288: Level: beginner
290: .seealso: `PetscFE`, `PetscFEView()`
291: @*/
292: PetscErrorCode PetscFEDestroy(PetscFE *fem)
293: {
294: PetscFunctionBegin;
295: if (!*fem) PetscFunctionReturn(PETSC_SUCCESS);
298: if (--((PetscObject)(*fem))->refct > 0) {
299: *fem = NULL;
300: PetscFunctionReturn(PETSC_SUCCESS);
301: }
302: ((PetscObject)(*fem))->refct = 0;
304: if ((*fem)->subspaces) {
305: PetscInt dim, d;
307: PetscCall(PetscDualSpaceGetDimension((*fem)->dualSpace, &dim));
308: for (d = 0; d < dim; ++d) PetscCall(PetscFEDestroy(&(*fem)->subspaces[d]));
309: }
310: PetscCall(PetscFree((*fem)->subspaces));
311: PetscCall(PetscFree((*fem)->invV));
312: PetscCall(PetscTabulationDestroy(&(*fem)->T));
313: PetscCall(PetscTabulationDestroy(&(*fem)->Tf));
314: PetscCall(PetscTabulationDestroy(&(*fem)->Tc));
315: PetscCall(PetscSpaceDestroy(&(*fem)->basisSpace));
316: PetscCall(PetscDualSpaceDestroy(&(*fem)->dualSpace));
317: PetscCall(PetscQuadratureDestroy(&(*fem)->quadrature));
318: PetscCall(PetscQuadratureDestroy(&(*fem)->faceQuadrature));
319: #ifdef PETSC_HAVE_LIBCEED
320: PetscCallCEED(CeedBasisDestroy(&(*fem)->ceedBasis));
321: PetscCallCEED(CeedDestroy(&(*fem)->ceed));
322: #endif
324: PetscTryTypeMethod((*fem), destroy);
325: PetscCall(PetscHeaderDestroy(fem));
326: PetscFunctionReturn(PETSC_SUCCESS);
327: }
329: /*@
330: PetscFECreate - Creates an empty `PetscFE` object. The type can then be set with `PetscFESetType()`.
332: Collective
334: Input Parameter:
335: . comm - The communicator for the `PetscFE` object
337: Output Parameter:
338: . fem - The `PetscFE` object
340: Level: beginner
342: .seealso: `PetscFE`, `PetscFEType`, `PetscFESetType()`, `PetscFECreateDefault()`, `PETSCFEGALERKIN`
343: @*/
344: PetscErrorCode PetscFECreate(MPI_Comm comm, PetscFE *fem)
345: {
346: PetscFE f;
348: PetscFunctionBegin;
350: PetscCall(PetscCitationsRegister(FECitation, &FEcite));
351: *fem = NULL;
352: PetscCall(PetscFEInitializePackage());
354: PetscCall(PetscHeaderCreate(f, PETSCFE_CLASSID, "PetscFE", "Finite Element", "PetscFE", comm, PetscFEDestroy, PetscFEView));
356: f->basisSpace = NULL;
357: f->dualSpace = NULL;
358: f->numComponents = 1;
359: f->subspaces = NULL;
360: f->invV = NULL;
361: f->T = NULL;
362: f->Tf = NULL;
363: f->Tc = NULL;
364: PetscCall(PetscArrayzero(&f->quadrature, 1));
365: PetscCall(PetscArrayzero(&f->faceQuadrature, 1));
366: f->blockSize = 0;
367: f->numBlocks = 1;
368: f->batchSize = 0;
369: f->numBatches = 1;
371: *fem = f;
372: PetscFunctionReturn(PETSC_SUCCESS);
373: }
375: /*@
376: PetscFEGetSpatialDimension - Returns the spatial dimension of the element
378: Not Collective
380: Input Parameter:
381: . fem - The `PetscFE` object
383: Output Parameter:
384: . dim - The spatial dimension
386: Level: intermediate
388: .seealso: `PetscFE`, `PetscFECreate()`
389: @*/
390: PetscErrorCode PetscFEGetSpatialDimension(PetscFE fem, PetscInt *dim)
391: {
392: DM dm;
394: PetscFunctionBegin;
397: PetscCall(PetscDualSpaceGetDM(fem->dualSpace, &dm));
398: PetscCall(DMGetDimension(dm, dim));
399: PetscFunctionReturn(PETSC_SUCCESS);
400: }
402: /*@
403: PetscFESetNumComponents - Sets the number of field components in the element
405: Not Collective
407: Input Parameters:
408: + fem - The `PetscFE` object
409: - comp - The number of field components
411: Level: intermediate
413: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`, `PetscFEGetNumComponents()`
414: @*/
415: PetscErrorCode PetscFESetNumComponents(PetscFE fem, PetscInt comp)
416: {
417: PetscFunctionBegin;
419: fem->numComponents = comp;
420: PetscFunctionReturn(PETSC_SUCCESS);
421: }
423: /*@
424: PetscFEGetNumComponents - Returns the number of components in the element
426: Not Collective
428: Input Parameter:
429: . fem - The `PetscFE` object
431: Output Parameter:
432: . comp - The number of field components
434: Level: intermediate
436: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`, `PetscFEGetNumComponents()`
437: @*/
438: PetscErrorCode PetscFEGetNumComponents(PetscFE fem, PetscInt *comp)
439: {
440: PetscFunctionBegin;
443: *comp = fem->numComponents;
444: PetscFunctionReturn(PETSC_SUCCESS);
445: }
447: /*@
448: PetscFESetTileSizes - Sets the tile sizes for evaluation
450: Not Collective
452: Input Parameters:
453: + fem - The `PetscFE` object
454: . blockSize - The number of elements in a block
455: . numBlocks - The number of blocks in a batch
456: . batchSize - The number of elements in a batch
457: - numBatches - The number of batches in a chunk
459: Level: intermediate
461: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetTileSizes()`
462: @*/
463: PetscErrorCode PetscFESetTileSizes(PetscFE fem, PetscInt blockSize, PetscInt numBlocks, PetscInt batchSize, PetscInt numBatches)
464: {
465: PetscFunctionBegin;
467: fem->blockSize = blockSize;
468: fem->numBlocks = numBlocks;
469: fem->batchSize = batchSize;
470: fem->numBatches = numBatches;
471: PetscFunctionReturn(PETSC_SUCCESS);
472: }
474: /*@
475: PetscFEGetTileSizes - Returns the tile sizes for evaluation
477: Not Collective
479: Input Parameter:
480: . fem - The `PetscFE` object
482: Output Parameters:
483: + blockSize - The number of elements in a block
484: . numBlocks - The number of blocks in a batch
485: . batchSize - The number of elements in a batch
486: - numBatches - The number of batches in a chunk
488: Level: intermediate
490: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFESetTileSizes()`
491: @*/
492: PetscErrorCode PetscFEGetTileSizes(PetscFE fem, PetscInt *blockSize, PetscInt *numBlocks, PetscInt *batchSize, PetscInt *numBatches)
493: {
494: PetscFunctionBegin;
500: if (blockSize) *blockSize = fem->blockSize;
501: if (numBlocks) *numBlocks = fem->numBlocks;
502: if (batchSize) *batchSize = fem->batchSize;
503: if (numBatches) *numBatches = fem->numBatches;
504: PetscFunctionReturn(PETSC_SUCCESS);
505: }
507: /*@
508: PetscFEGetBasisSpace - Returns the `PetscSpace` used for the approximation of the solution for the `PetscFE`
510: Not Collective
512: Input Parameter:
513: . fem - The `PetscFE` object
515: Output Parameter:
516: . sp - The `PetscSpace` object
518: Level: intermediate
520: .seealso: `PetscFE`, `PetscSpace`, `PetscFECreate()`
521: @*/
522: PetscErrorCode PetscFEGetBasisSpace(PetscFE fem, PetscSpace *sp)
523: {
524: PetscFunctionBegin;
527: *sp = fem->basisSpace;
528: PetscFunctionReturn(PETSC_SUCCESS);
529: }
531: /*@
532: PetscFESetBasisSpace - Sets the `PetscSpace` used for the approximation of the solution
534: Not Collective
536: Input Parameters:
537: + fem - The `PetscFE` object
538: - sp - The `PetscSpace` object
540: Level: intermediate
542: Developer Note:
543: There is `PetscFESetBasisSpace()` but the `PetscFESetDualSpace()`, likely the Basis is unneeded in the function name
545: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetDualSpace()`
546: @*/
547: PetscErrorCode PetscFESetBasisSpace(PetscFE fem, PetscSpace sp)
548: {
549: PetscFunctionBegin;
552: PetscCall(PetscSpaceDestroy(&fem->basisSpace));
553: fem->basisSpace = sp;
554: PetscCall(PetscObjectReference((PetscObject)fem->basisSpace));
555: PetscFunctionReturn(PETSC_SUCCESS);
556: }
558: /*@
559: PetscFEGetDualSpace - Returns the `PetscDualSpace` used to define the inner product for a `PetscFE`
561: Not Collective
563: Input Parameter:
564: . fem - The `PetscFE` object
566: Output Parameter:
567: . sp - The `PetscDualSpace` object
569: Level: intermediate
571: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
572: @*/
573: PetscErrorCode PetscFEGetDualSpace(PetscFE fem, PetscDualSpace *sp)
574: {
575: PetscFunctionBegin;
578: *sp = fem->dualSpace;
579: PetscFunctionReturn(PETSC_SUCCESS);
580: }
582: /*@
583: PetscFESetDualSpace - Sets the `PetscDualSpace` used to define the inner product
585: Not Collective
587: Input Parameters:
588: + fem - The `PetscFE` object
589: - sp - The `PetscDualSpace` object
591: Level: intermediate
593: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetBasisSpace()`
594: @*/
595: PetscErrorCode PetscFESetDualSpace(PetscFE fem, PetscDualSpace sp)
596: {
597: PetscFunctionBegin;
600: PetscCall(PetscDualSpaceDestroy(&fem->dualSpace));
601: fem->dualSpace = sp;
602: PetscCall(PetscObjectReference((PetscObject)fem->dualSpace));
603: PetscFunctionReturn(PETSC_SUCCESS);
604: }
606: /*@
607: PetscFEGetQuadrature - Returns the `PetscQuadrature` used to calculate inner products
609: Not Collective
611: Input Parameter:
612: . fem - The `PetscFE` object
614: Output Parameter:
615: . q - The `PetscQuadrature` object
617: Level: intermediate
619: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`
620: @*/
621: PetscErrorCode PetscFEGetQuadrature(PetscFE fem, PetscQuadrature *q)
622: {
623: PetscFunctionBegin;
626: *q = fem->quadrature;
627: PetscFunctionReturn(PETSC_SUCCESS);
628: }
630: /*@
631: PetscFESetQuadrature - Sets the `PetscQuadrature` used to calculate inner products
633: Not Collective
635: Input Parameters:
636: + fem - The `PetscFE` object
637: - q - The `PetscQuadrature` object
639: Level: intermediate
641: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFEGetFaceQuadrature()`
642: @*/
643: PetscErrorCode PetscFESetQuadrature(PetscFE fem, PetscQuadrature q)
644: {
645: PetscInt Nc, qNc;
647: PetscFunctionBegin;
649: if (q == fem->quadrature) PetscFunctionReturn(PETSC_SUCCESS);
650: PetscCall(PetscFEGetNumComponents(fem, &Nc));
651: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
652: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
653: PetscCall(PetscTabulationDestroy(&fem->T));
654: PetscCall(PetscTabulationDestroy(&fem->Tc));
655: PetscCall(PetscObjectReference((PetscObject)q));
656: PetscCall(PetscQuadratureDestroy(&fem->quadrature));
657: fem->quadrature = q;
658: PetscFunctionReturn(PETSC_SUCCESS);
659: }
661: /*@
662: PetscFEGetFaceQuadrature - Returns the `PetscQuadrature` used to calculate inner products on faces
664: Not Collective
666: Input Parameter:
667: . fem - The `PetscFE` object
669: Output Parameter:
670: . q - The `PetscQuadrature` object
672: Level: intermediate
674: Developer Note:
675: There is a special face quadrature but not edge, likely this API would benefit from a refactorization
677: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
678: @*/
679: PetscErrorCode PetscFEGetFaceQuadrature(PetscFE fem, PetscQuadrature *q)
680: {
681: PetscFunctionBegin;
684: *q = fem->faceQuadrature;
685: PetscFunctionReturn(PETSC_SUCCESS);
686: }
688: /*@
689: PetscFESetFaceQuadrature - Sets the `PetscQuadrature` used to calculate inner products on faces
691: Not Collective
693: Input Parameters:
694: + fem - The `PetscFE` object
695: - q - The `PetscQuadrature` object
697: Level: intermediate
699: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
700: @*/
701: PetscErrorCode PetscFESetFaceQuadrature(PetscFE fem, PetscQuadrature q)
702: {
703: PetscInt Nc, qNc;
705: PetscFunctionBegin;
707: if (q == fem->faceQuadrature) PetscFunctionReturn(PETSC_SUCCESS);
708: PetscCall(PetscFEGetNumComponents(fem, &Nc));
709: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
710: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
711: PetscCall(PetscTabulationDestroy(&fem->Tf));
712: PetscCall(PetscObjectReference((PetscObject)q));
713: PetscCall(PetscQuadratureDestroy(&fem->faceQuadrature));
714: fem->faceQuadrature = q;
715: PetscFunctionReturn(PETSC_SUCCESS);
716: }
718: /*@
719: PetscFECopyQuadrature - Copy both volumetric and surface quadrature to a new `PetscFE`
721: Not Collective
723: Input Parameters:
724: + sfe - The `PetscFE` source for the quadratures
725: - tfe - The `PetscFE` target for the quadratures
727: Level: intermediate
729: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
730: @*/
731: PetscErrorCode PetscFECopyQuadrature(PetscFE sfe, PetscFE tfe)
732: {
733: PetscQuadrature q;
735: PetscFunctionBegin;
738: PetscCall(PetscFEGetQuadrature(sfe, &q));
739: PetscCall(PetscFESetQuadrature(tfe, q));
740: PetscCall(PetscFEGetFaceQuadrature(sfe, &q));
741: PetscCall(PetscFESetFaceQuadrature(tfe, q));
742: PetscFunctionReturn(PETSC_SUCCESS);
743: }
745: /*@C
746: PetscFEGetNumDof - Returns the number of dofs (dual basis vectors) associated to mesh points on the reference cell of a given dimension
748: Not Collective
750: Input Parameter:
751: . fem - The `PetscFE` object
753: Output Parameter:
754: . numDof - Array with the number of dofs per dimension
756: Level: intermediate
758: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
759: @*/
760: PetscErrorCode PetscFEGetNumDof(PetscFE fem, const PetscInt **numDof)
761: {
762: PetscFunctionBegin;
765: PetscCall(PetscDualSpaceGetNumDof(fem->dualSpace, numDof));
766: PetscFunctionReturn(PETSC_SUCCESS);
767: }
769: /*@C
770: PetscFEGetCellTabulation - Returns the tabulation of the basis functions at the quadrature points on the reference cell
772: Not Collective
774: Input Parameters:
775: + fem - The `PetscFE` object
776: - k - The highest derivative we need to tabulate, very often 1
778: Output Parameter:
779: . T - The basis function values and derivatives at quadrature points
781: Level: intermediate
783: Note:
784: .vb
785: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
786: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
787: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
788: .ve
790: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
791: @*/
792: PetscErrorCode PetscFEGetCellTabulation(PetscFE fem, PetscInt k, PetscTabulation *T)
793: {
794: PetscInt npoints;
795: const PetscReal *points;
797: PetscFunctionBegin;
800: PetscCall(PetscQuadratureGetData(fem->quadrature, NULL, NULL, &npoints, &points, NULL));
801: if (!fem->T) PetscCall(PetscFECreateTabulation(fem, 1, npoints, points, k, &fem->T));
802: PetscCheck(!fem->T || k <= fem->T->K, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->T->K);
803: *T = fem->T;
804: PetscFunctionReturn(PETSC_SUCCESS);
805: }
807: /*@C
808: PetscFEGetFaceTabulation - Returns the tabulation of the basis functions at the face quadrature points for each face of the reference cell
810: Not Collective
812: Input Parameters:
813: + fem - The `PetscFE` object
814: - k - The highest derivative we need to tabulate, very often 1
816: Output Parameter:
817: . Tf - The basis function values and derivatives at face quadrature points
819: Level: intermediate
821: Note:
822: .vb
823: T->T[0] = Bf[((f*Nq + q)*pdim + i)*Nc + c] is the value at point f,q for basis function i and component c
824: T->T[1] = Df[(((f*Nq + q)*pdim + i)*Nc + c)*dim + d] is the derivative value at point f,q for basis function i, component c, in direction d
825: T->T[2] = Hf[((((f*Nq + q)*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point f,q for basis function i, component c, in directions d and e
826: .ve
828: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
829: @*/
830: PetscErrorCode PetscFEGetFaceTabulation(PetscFE fem, PetscInt k, PetscTabulation *Tf)
831: {
832: PetscFunctionBegin;
835: if (!fem->Tf) {
836: const PetscReal xi0[3] = {-1., -1., -1.};
837: PetscReal v0[3], J[9], detJ;
838: PetscQuadrature fq;
839: PetscDualSpace sp;
840: DM dm;
841: const PetscInt *faces;
842: PetscInt dim, numFaces, f, npoints, q;
843: const PetscReal *points;
844: PetscReal *facePoints;
846: PetscCall(PetscFEGetDualSpace(fem, &sp));
847: PetscCall(PetscDualSpaceGetDM(sp, &dm));
848: PetscCall(DMGetDimension(dm, &dim));
849: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
850: PetscCall(DMPlexGetCone(dm, 0, &faces));
851: PetscCall(PetscFEGetFaceQuadrature(fem, &fq));
852: if (fq) {
853: PetscCall(PetscQuadratureGetData(fq, NULL, NULL, &npoints, &points, NULL));
854: PetscCall(PetscMalloc1(numFaces * npoints * dim, &facePoints));
855: for (f = 0; f < numFaces; ++f) {
856: PetscCall(DMPlexComputeCellGeometryFEM(dm, faces[f], NULL, v0, J, NULL, &detJ));
857: for (q = 0; q < npoints; ++q) CoordinatesRefToReal(dim, dim - 1, xi0, v0, J, &points[q * (dim - 1)], &facePoints[(f * npoints + q) * dim]);
858: }
859: PetscCall(PetscFECreateTabulation(fem, numFaces, npoints, facePoints, k, &fem->Tf));
860: PetscCall(PetscFree(facePoints));
861: }
862: }
863: PetscCheck(!fem->Tf || k <= fem->Tf->K, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->Tf->K);
864: *Tf = fem->Tf;
865: PetscFunctionReturn(PETSC_SUCCESS);
866: }
868: /*@C
869: PetscFEGetFaceCentroidTabulation - Returns the tabulation of the basis functions at the face centroid points
871: Not Collective
873: Input Parameter:
874: . fem - The `PetscFE` object
876: Output Parameter:
877: . Tc - The basis function values at face centroid points
879: Level: intermediate
881: Note:
882: .vb
883: T->T[0] = Bf[(f*pdim + i)*Nc + c] is the value at point f for basis function i and component c
884: .ve
886: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetFaceTabulation()`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
887: @*/
888: PetscErrorCode PetscFEGetFaceCentroidTabulation(PetscFE fem, PetscTabulation *Tc)
889: {
890: PetscFunctionBegin;
893: if (!fem->Tc) {
894: PetscDualSpace sp;
895: DM dm;
896: const PetscInt *cone;
897: PetscReal *centroids;
898: PetscInt dim, numFaces, f;
900: PetscCall(PetscFEGetDualSpace(fem, &sp));
901: PetscCall(PetscDualSpaceGetDM(sp, &dm));
902: PetscCall(DMGetDimension(dm, &dim));
903: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
904: PetscCall(DMPlexGetCone(dm, 0, &cone));
905: PetscCall(PetscMalloc1(numFaces * dim, ¢roids));
906: for (f = 0; f < numFaces; ++f) PetscCall(DMPlexComputeCellGeometryFVM(dm, cone[f], NULL, ¢roids[f * dim], NULL));
907: PetscCall(PetscFECreateTabulation(fem, 1, numFaces, centroids, 0, &fem->Tc));
908: PetscCall(PetscFree(centroids));
909: }
910: *Tc = fem->Tc;
911: PetscFunctionReturn(PETSC_SUCCESS);
912: }
914: /*@C
915: PetscFECreateTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
917: Not Collective
919: Input Parameters:
920: + fem - The `PetscFE` object
921: . nrepl - The number of replicas
922: . npoints - The number of tabulation points in a replica
923: . points - The tabulation point coordinates
924: - K - The number of derivatives calculated
926: Output Parameter:
927: . T - The basis function values and derivatives at tabulation points
929: Level: intermediate
931: Note:
932: .vb
933: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
934: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
935: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
937: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
938: @*/
939: PetscErrorCode PetscFECreateTabulation(PetscFE fem, PetscInt nrepl, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation *T)
940: {
941: DM dm;
942: PetscDualSpace Q;
943: PetscInt Nb; /* Dimension of FE space P */
944: PetscInt Nc; /* Field components */
945: PetscInt cdim; /* Reference coordinate dimension */
946: PetscInt k;
948: PetscFunctionBegin;
949: if (!npoints || !fem->dualSpace || K < 0) {
950: *T = NULL;
951: PetscFunctionReturn(PETSC_SUCCESS);
952: }
956: PetscCall(PetscFEGetDualSpace(fem, &Q));
957: PetscCall(PetscDualSpaceGetDM(Q, &dm));
958: PetscCall(DMGetDimension(dm, &cdim));
959: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
960: PetscCall(PetscFEGetNumComponents(fem, &Nc));
961: PetscCall(PetscMalloc1(1, T));
962: (*T)->K = !cdim ? 0 : K;
963: (*T)->Nr = nrepl;
964: (*T)->Np = npoints;
965: (*T)->Nb = Nb;
966: (*T)->Nc = Nc;
967: (*T)->cdim = cdim;
968: PetscCall(PetscMalloc1((*T)->K + 1, &(*T)->T));
969: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscMalloc1(nrepl * npoints * Nb * Nc * PetscPowInt(cdim, k), &(*T)->T[k]));
970: PetscUseTypeMethod(fem, createtabulation, nrepl * npoints, points, K, *T);
971: PetscFunctionReturn(PETSC_SUCCESS);
972: }
974: /*@C
975: PetscFEComputeTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
977: Not Collective
979: Input Parameters:
980: + fem - The `PetscFE` object
981: . npoints - The number of tabulation points
982: . points - The tabulation point coordinates
983: . K - The number of derivatives calculated
984: - T - An existing tabulation object with enough allocated space
986: Output Parameter:
987: . T - The basis function values and derivatives at tabulation points
989: Level: intermediate
991: Note:
992: .vb
993: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
994: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
995: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
996: .ve
998: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
999: @*/
1000: PetscErrorCode PetscFEComputeTabulation(PetscFE fem, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation T)
1001: {
1002: PetscFunctionBeginHot;
1003: if (!npoints || !fem->dualSpace || K < 0) PetscFunctionReturn(PETSC_SUCCESS);
1007: if (PetscDefined(USE_DEBUG)) {
1008: DM dm;
1009: PetscDualSpace Q;
1010: PetscInt Nb; /* Dimension of FE space P */
1011: PetscInt Nc; /* Field components */
1012: PetscInt cdim; /* Reference coordinate dimension */
1014: PetscCall(PetscFEGetDualSpace(fem, &Q));
1015: PetscCall(PetscDualSpaceGetDM(Q, &dm));
1016: PetscCall(DMGetDimension(dm, &cdim));
1017: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
1018: PetscCall(PetscFEGetNumComponents(fem, &Nc));
1019: PetscCheck(T->K == (!cdim ? 0 : K), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation K %" PetscInt_FMT " must match requested K %" PetscInt_FMT, T->K, !cdim ? 0 : K);
1020: PetscCheck(T->Nb == Nb, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nb %" PetscInt_FMT " must match requested Nb %" PetscInt_FMT, T->Nb, Nb);
1021: PetscCheck(T->Nc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nc %" PetscInt_FMT " must match requested Nc %" PetscInt_FMT, T->Nc, Nc);
1022: PetscCheck(T->cdim == cdim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation cdim %" PetscInt_FMT " must match requested cdim %" PetscInt_FMT, T->cdim, cdim);
1023: }
1024: T->Nr = 1;
1025: T->Np = npoints;
1026: PetscUseTypeMethod(fem, createtabulation, npoints, points, K, T);
1027: PetscFunctionReturn(PETSC_SUCCESS);
1028: }
1030: /*@C
1031: PetscTabulationDestroy - Frees memory from the associated tabulation.
1033: Not Collective
1035: Input Parameter:
1036: . T - The tabulation
1038: Level: intermediate
1040: .seealso: `PetscTabulation`, `PetscFECreateTabulation()`, `PetscFEGetCellTabulation()`
1041: @*/
1042: PetscErrorCode PetscTabulationDestroy(PetscTabulation *T)
1043: {
1044: PetscInt k;
1046: PetscFunctionBegin;
1048: if (!T || !(*T)) PetscFunctionReturn(PETSC_SUCCESS);
1049: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscFree((*T)->T[k]));
1050: PetscCall(PetscFree((*T)->T));
1051: PetscCall(PetscFree(*T));
1052: *T = NULL;
1053: PetscFunctionReturn(PETSC_SUCCESS);
1054: }
1056: PETSC_EXTERN PetscErrorCode PetscFECreatePointTrace(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1057: {
1058: PetscSpace bsp, bsubsp;
1059: PetscDualSpace dsp, dsubsp;
1060: PetscInt dim, depth, numComp, i, j, coneSize, order;
1061: PetscFEType type;
1062: DM dm;
1063: DMLabel label;
1064: PetscReal *xi, *v, *J, detJ;
1065: const char *name;
1066: PetscQuadrature origin, fullQuad, subQuad;
1068: PetscFunctionBegin;
1071: PetscCall(PetscFEGetBasisSpace(fe, &bsp));
1072: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1073: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1074: PetscCall(DMGetDimension(dm, &dim));
1075: PetscCall(DMPlexGetDepthLabel(dm, &label));
1076: PetscCall(DMLabelGetValue(label, refPoint, &depth));
1077: PetscCall(PetscCalloc1(depth, &xi));
1078: PetscCall(PetscMalloc1(dim, &v));
1079: PetscCall(PetscMalloc1(dim * dim, &J));
1080: for (i = 0; i < depth; i++) xi[i] = 0.;
1081: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &origin));
1082: PetscCall(PetscQuadratureSetData(origin, depth, 0, 1, xi, NULL));
1083: PetscCall(DMPlexComputeCellGeometryFEM(dm, refPoint, origin, v, J, NULL, &detJ));
1084: /* CellGeometryFEM computes the expanded Jacobian, we want the true jacobian */
1085: for (i = 1; i < dim; i++) {
1086: for (j = 0; j < depth; j++) J[i * depth + j] = J[i * dim + j];
1087: }
1088: PetscCall(PetscQuadratureDestroy(&origin));
1089: PetscCall(PetscDualSpaceGetPointSubspace(dsp, refPoint, &dsubsp));
1090: PetscCall(PetscSpaceCreateSubspace(bsp, dsubsp, v, J, NULL, NULL, PETSC_OWN_POINTER, &bsubsp));
1091: PetscCall(PetscSpaceSetUp(bsubsp));
1092: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), trFE));
1093: PetscCall(PetscFEGetType(fe, &type));
1094: PetscCall(PetscFESetType(*trFE, type));
1095: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1096: PetscCall(PetscFESetNumComponents(*trFE, numComp));
1097: PetscCall(PetscFESetBasisSpace(*trFE, bsubsp));
1098: PetscCall(PetscFESetDualSpace(*trFE, dsubsp));
1099: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1100: if (name) PetscCall(PetscFESetName(*trFE, name));
1101: PetscCall(PetscFEGetQuadrature(fe, &fullQuad));
1102: PetscCall(PetscQuadratureGetOrder(fullQuad, &order));
1103: PetscCall(DMPlexGetConeSize(dm, refPoint, &coneSize));
1104: if (coneSize == 2 * depth) PetscCall(PetscDTGaussTensorQuadrature(depth, 1, (order + 2) / 2, -1., 1., &subQuad));
1105: else PetscCall(PetscDTSimplexQuadrature(depth, order, PETSCDTSIMPLEXQUAD_DEFAULT, &subQuad));
1106: PetscCall(PetscFESetQuadrature(*trFE, subQuad));
1107: PetscCall(PetscFESetUp(*trFE));
1108: PetscCall(PetscQuadratureDestroy(&subQuad));
1109: PetscCall(PetscSpaceDestroy(&bsubsp));
1110: PetscFunctionReturn(PETSC_SUCCESS);
1111: }
1113: PetscErrorCode PetscFECreateHeightTrace(PetscFE fe, PetscInt height, PetscFE *trFE)
1114: {
1115: PetscInt hStart, hEnd;
1116: PetscDualSpace dsp;
1117: DM dm;
1119: PetscFunctionBegin;
1122: *trFE = NULL;
1123: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1124: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1125: PetscCall(DMPlexGetHeightStratum(dm, height, &hStart, &hEnd));
1126: if (hEnd <= hStart) PetscFunctionReturn(PETSC_SUCCESS);
1127: PetscCall(PetscFECreatePointTrace(fe, hStart, trFE));
1128: PetscFunctionReturn(PETSC_SUCCESS);
1129: }
1131: /*@
1132: PetscFEGetDimension - Get the dimension of the finite element space on a cell
1134: Not Collective
1136: Input Parameter:
1137: . fe - The `PetscFE`
1139: Output Parameter:
1140: . dim - The dimension
1142: Level: intermediate
1144: .seealso: `PetscFE`, `PetscFECreate()`, `PetscSpaceGetDimension()`, `PetscDualSpaceGetDimension()`
1145: @*/
1146: PetscErrorCode PetscFEGetDimension(PetscFE fem, PetscInt *dim)
1147: {
1148: PetscFunctionBegin;
1151: PetscTryTypeMethod(fem, getdimension, dim);
1152: PetscFunctionReturn(PETSC_SUCCESS);
1153: }
1155: /*@C
1156: PetscFEPushforward - Map the reference element function to real space
1158: Input Parameters:
1159: + fe - The `PetscFE`
1160: . fegeom - The cell geometry
1161: . Nv - The number of function values
1162: - vals - The function values
1164: Output Parameter:
1165: . vals - The transformed function values
1167: Level: advanced
1169: Notes:
1170: This just forwards the call onto `PetscDualSpacePushforward()`.
1172: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1174: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscDualSpacePushforward()`
1175: @*/
1176: PetscErrorCode PetscFEPushforward(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1177: {
1178: PetscFunctionBeginHot;
1179: PetscCall(PetscDualSpacePushforward(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1180: PetscFunctionReturn(PETSC_SUCCESS);
1181: }
1183: /*@C
1184: PetscFEPushforwardGradient - Map the reference element function gradient to real space
1186: Input Parameters:
1187: + fe - The `PetscFE`
1188: . fegeom - The cell geometry
1189: . Nv - The number of function gradient values
1190: - vals - The function gradient values
1192: Output Parameter:
1193: . vals - The transformed function gradient values
1195: Level: advanced
1197: Notes:
1198: This just forwards the call onto `PetscDualSpacePushforwardGradient()`.
1200: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1202: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardGradient()`, `PetscDualSpacePushforward()`
1203: @*/
1204: PetscErrorCode PetscFEPushforwardGradient(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1205: {
1206: PetscFunctionBeginHot;
1207: PetscCall(PetscDualSpacePushforwardGradient(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1208: PetscFunctionReturn(PETSC_SUCCESS);
1209: }
1211: /*@C
1212: PetscFEPushforwardHessian - Map the reference element function Hessian to real space
1214: Input Parameters:
1215: + fe - The `PetscFE`
1216: . fegeom - The cell geometry
1217: . Nv - The number of function Hessian values
1218: - vals - The function Hessian values
1220: Output Parameter:
1221: . vals - The transformed function Hessian values
1223: Level: advanced
1225: Notes:
1226: This just forwards the call onto `PetscDualSpacePushforwardHessian()`.
1228: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1230: Developer Note:
1231: It is unclear why all these one line convenience routines are desirable
1233: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardHessian()`, `PetscDualSpacePushforward()`
1234: @*/
1235: PetscErrorCode PetscFEPushforwardHessian(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1236: {
1237: PetscFunctionBeginHot;
1238: PetscCall(PetscDualSpacePushforwardHessian(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1239: PetscFunctionReturn(PETSC_SUCCESS);
1240: }
1242: /*
1243: Purpose: Compute element vector for chunk of elements
1245: Input:
1246: Sizes:
1247: Ne: number of elements
1248: Nf: number of fields
1249: PetscFE
1250: dim: spatial dimension
1251: Nb: number of basis functions
1252: Nc: number of field components
1253: PetscQuadrature
1254: Nq: number of quadrature points
1256: Geometry:
1257: PetscFEGeom[Ne] possibly *Nq
1258: PetscReal v0s[dim]
1259: PetscReal n[dim]
1260: PetscReal jacobians[dim*dim]
1261: PetscReal jacobianInverses[dim*dim]
1262: PetscReal jacobianDeterminants
1263: FEM:
1264: PetscFE
1265: PetscQuadrature
1266: PetscReal quadPoints[Nq*dim]
1267: PetscReal quadWeights[Nq]
1268: PetscReal basis[Nq*Nb*Nc]
1269: PetscReal basisDer[Nq*Nb*Nc*dim]
1270: PetscScalar coefficients[Ne*Nb*Nc]
1271: PetscScalar elemVec[Ne*Nb*Nc]
1273: Problem:
1274: PetscInt f: the active field
1275: f0, f1
1277: Work Space:
1278: PetscFE
1279: PetscScalar f0[Nq*dim];
1280: PetscScalar f1[Nq*dim*dim];
1281: PetscScalar u[Nc];
1282: PetscScalar gradU[Nc*dim];
1283: PetscReal x[dim];
1284: PetscScalar realSpaceDer[dim];
1286: Purpose: Compute element vector for N_cb batches of elements
1288: Input:
1289: Sizes:
1290: N_cb: Number of serial cell batches
1292: Geometry:
1293: PetscReal v0s[Ne*dim]
1294: PetscReal jacobians[Ne*dim*dim] possibly *Nq
1295: PetscReal jacobianInverses[Ne*dim*dim] possibly *Nq
1296: PetscReal jacobianDeterminants[Ne] possibly *Nq
1297: FEM:
1298: static PetscReal quadPoints[Nq*dim]
1299: static PetscReal quadWeights[Nq]
1300: static PetscReal basis[Nq*Nb*Nc]
1301: static PetscReal basisDer[Nq*Nb*Nc*dim]
1302: PetscScalar coefficients[Ne*Nb*Nc]
1303: PetscScalar elemVec[Ne*Nb*Nc]
1305: ex62.c:
1306: PetscErrorCode PetscFEIntegrateResidualBatch(PetscInt Ne, PetscInt numFields, PetscInt field, PetscQuadrature quad[], const PetscScalar coefficients[],
1307: const PetscReal v0s[], const PetscReal jacobians[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[],
1308: void (*f0_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f0[]),
1309: void (*f1_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f1[]), PetscScalar elemVec[])
1311: ex52.c:
1312: PetscErrorCode IntegrateLaplacianBatchCPU(PetscInt Ne, PetscInt Nb, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1313: PetscErrorCode IntegrateElasticityBatchCPU(PetscInt Ne, PetscInt Nb, PetscInt Ncomp, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1315: ex52_integrateElement.cu
1316: __global__ void integrateElementQuadrature(int N_cb, realType *coefficients, realType *jacobianInverses, realType *jacobianDeterminants, realType *elemVec)
1318: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt Nbl, const PetscScalar coefficients[],
1319: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1320: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1322: ex52_integrateElementOpenCL.c:
1323: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt N_bl, const PetscScalar coefficients[],
1324: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1325: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1327: __kernel void integrateElementQuadrature(int N_cb, __global float *coefficients, __global float *jacobianInverses, __global float *jacobianDeterminants, __global float *elemVec)
1328: */
1330: /*@C
1331: PetscFEIntegrate - Produce the integral for the given field for a chunk of elements by quadrature integration
1333: Not Collective
1335: Input Parameters:
1336: + prob - The `PetscDS` specifying the discretizations and continuum functions
1337: . field - The field being integrated
1338: . Ne - The number of elements in the chunk
1339: . cgeom - The cell geometry for each cell in the chunk
1340: . coefficients - The array of FEM basis coefficients for the elements
1341: . probAux - The `PetscDS` specifying the auxiliary discretizations
1342: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1344: Output Parameter:
1345: . integral - the integral for this field
1347: Level: intermediate
1349: Developer Note:
1350: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1352: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrateBd()`
1353: @*/
1354: PetscErrorCode PetscFEIntegrate(PetscDS prob, PetscInt field, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1355: {
1356: PetscFE fe;
1358: PetscFunctionBegin;
1360: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1361: if (fe->ops->integrate) PetscCall((*fe->ops->integrate)(prob, field, Ne, cgeom, coefficients, probAux, coefficientsAux, integral));
1362: PetscFunctionReturn(PETSC_SUCCESS);
1363: }
1365: /*@C
1366: PetscFEIntegrateBd - Produce the integral for the given field for a chunk of elements by quadrature integration
1368: Not Collective
1370: Input Parameters:
1371: + prob - The `PetscDS` specifying the discretizations and continuum functions
1372: . field - The field being integrated
1373: . obj_func - The function to be integrated
1374: . Ne - The number of elements in the chunk
1375: . fgeom - The face geometry for each face in the chunk
1376: . coefficients - The array of FEM basis coefficients for the elements
1377: . probAux - The `PetscDS` specifying the auxiliary discretizations
1378: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1380: Output Parameter:
1381: . integral - the integral for this field
1383: Level: intermediate
1385: Developer Note:
1386: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1388: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrate()`
1389: @*/
1390: PetscErrorCode PetscFEIntegrateBd(PetscDS prob, PetscInt field, void (*obj_func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscInt Ne, PetscFEGeom *geom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1391: {
1392: PetscFE fe;
1394: PetscFunctionBegin;
1396: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1397: if (fe->ops->integratebd) PetscCall((*fe->ops->integratebd)(prob, field, obj_func, Ne, geom, coefficients, probAux, coefficientsAux, integral));
1398: PetscFunctionReturn(PETSC_SUCCESS);
1399: }
1401: /*@C
1402: PetscFEIntegrateResidual - Produce the element residual vector for a chunk of elements by quadrature integration
1404: Not Collective
1406: Input Parameters:
1407: + ds - The `PetscDS` specifying the discretizations and continuum functions
1408: . key - The (label+value, field) being integrated
1409: . Ne - The number of elements in the chunk
1410: . cgeom - The cell geometry for each cell in the chunk
1411: . coefficients - The array of FEM basis coefficients for the elements
1412: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1413: . probAux - The `PetscDS` specifying the auxiliary discretizations
1414: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1415: - t - The time
1417: Output Parameter:
1418: . elemVec - the element residual vectors from each element
1420: Level: intermediate
1422: Note:
1423: .vb
1424: Loop over batch of elements (e):
1425: Loop over quadrature points (q):
1426: Make u_q and gradU_q (loops over fields,Nb,Ncomp) and x_q
1427: Call f_0 and f_1
1428: Loop over element vector entries (f,fc --> i):
1429: elemVec[i] += \psi^{fc}_f(q) f0_{fc}(u, \nabla u) + \nabla\psi^{fc}_f(q) \cdot f1_{fc,df}(u, \nabla u)
1430: .ve
1432: .seealso: `PetscFEIntegrateResidual()`
1433: @*/
1434: PetscErrorCode PetscFEIntegrateResidual(PetscDS ds, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1435: {
1436: PetscFE fe;
1438: PetscFunctionBeginHot;
1440: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1441: if (fe->ops->integrateresidual) PetscCall((*fe->ops->integrateresidual)(ds, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1442: PetscFunctionReturn(PETSC_SUCCESS);
1443: }
1445: /*@C
1446: PetscFEIntegrateBdResidual - Produce the element residual vector for a chunk of elements by quadrature integration over a boundary
1448: Not Collective
1450: Input Parameters:
1451: + ds - The `PetscDS` specifying the discretizations and continuum functions
1452: . wf - The PetscWeakForm object holding the pointwise functions
1453: . key - The (label+value, field) being integrated
1454: . Ne - The number of elements in the chunk
1455: . fgeom - The face geometry for each cell in the chunk
1456: . coefficients - The array of FEM basis coefficients for the elements
1457: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1458: . probAux - The `PetscDS` specifying the auxiliary discretizations
1459: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1460: - t - The time
1462: Output Parameter:
1463: . elemVec - the element residual vectors from each element
1465: Level: intermediate
1467: .seealso: `PetscFEIntegrateResidual()`
1468: @*/
1469: PetscErrorCode PetscFEIntegrateBdResidual(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1470: {
1471: PetscFE fe;
1473: PetscFunctionBegin;
1475: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1476: if (fe->ops->integratebdresidual) PetscCall((*fe->ops->integratebdresidual)(ds, wf, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1477: PetscFunctionReturn(PETSC_SUCCESS);
1478: }
1480: /*@C
1481: PetscFEIntegrateHybridResidual - Produce the element residual vector for a chunk of hybrid element faces by quadrature integration
1483: Not Collective
1485: Input Parameters:
1486: + ds - The `PetscDS` specifying the discretizations and continuum functions
1487: . dsIn - The `PetscDS` specifying the discretizations and continuum functions for input
1488: . key - The (label+value, field) being integrated
1489: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1490: . Ne - The number of elements in the chunk
1491: . fgeom - The face geometry for each cell in the chunk
1492: . coefficients - The array of FEM basis coefficients for the elements
1493: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1494: . probAux - The `PetscDS` specifying the auxiliary discretizations
1495: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1496: - t - The time
1498: Output Parameter
1499: . elemVec - the element residual vectors from each element
1501: Level: developer
1503: .seealso: `PetscFEIntegrateResidual()`
1504: @*/
1505: PetscErrorCode PetscFEIntegrateHybridResidual(PetscDS ds, PetscDS dsIn, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1506: {
1507: PetscFE fe;
1509: PetscFunctionBegin;
1512: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1513: if (fe->ops->integratehybridresidual) PetscCall((*fe->ops->integratehybridresidual)(ds, dsIn, key, s, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1514: PetscFunctionReturn(PETSC_SUCCESS);
1515: }
1517: /*@C
1518: PetscFEIntegrateJacobian - Produce the element Jacobian for a chunk of elements by quadrature integration
1520: Not Collective
1522: Input Parameters:
1523: + ds - The `PetscDS` specifying the discretizations and continuum functions
1524: . jtype - The type of matrix pointwise functions that should be used
1525: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1526: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1527: . Ne - The number of elements in the chunk
1528: . cgeom - The cell geometry for each cell in the chunk
1529: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1530: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1531: . probAux - The `PetscDS` specifying the auxiliary discretizations
1532: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1533: . t - The time
1534: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1536: Output Parameter:
1537: . elemMat - the element matrices for the Jacobian from each element
1539: Level: intermediate
1541: Note:
1542: .vb
1543: Loop over batch of elements (e):
1544: Loop over element matrix entries (f,fc,g,gc --> i,j):
1545: Loop over quadrature points (q):
1546: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1547: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1548: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1549: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1550: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1551: .ve
1553: .seealso: `PetscFEIntegrateResidual()`
1554: @*/
1555: PetscErrorCode PetscFEIntegrateJacobian(PetscDS ds, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1556: {
1557: PetscFE fe;
1558: PetscInt Nf;
1560: PetscFunctionBegin;
1562: PetscCall(PetscDSGetNumFields(ds, &Nf));
1563: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1564: if (fe->ops->integratejacobian) PetscCall((*fe->ops->integratejacobian)(ds, jtype, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1565: PetscFunctionReturn(PETSC_SUCCESS);
1566: }
1568: /*@C
1569: PetscFEIntegrateBdJacobian - Produce the boundary element Jacobian for a chunk of elements by quadrature integration
1571: Not Collective
1573: Input Parameters:
1574: + ds - The `PetscDS` specifying the discretizations and continuum functions
1575: . wf - The PetscWeakForm holding the pointwise functions
1576: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1577: . Ne - The number of elements in the chunk
1578: . fgeom - The face geometry for each cell in the chunk
1579: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1580: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1581: . probAux - The `PetscDS` specifying the auxiliary discretizations
1582: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1583: . t - The time
1584: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1586: Output Parameter:
1587: . elemMat - the element matrices for the Jacobian from each element
1589: Level: intermediate
1591: Note:
1592: .vb
1593: Loop over batch of elements (e):
1594: Loop over element matrix entries (f,fc,g,gc --> i,j):
1595: Loop over quadrature points (q):
1596: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1597: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1598: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1599: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1600: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1601: .ve
1603: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1604: @*/
1605: PetscErrorCode PetscFEIntegrateBdJacobian(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1606: {
1607: PetscFE fe;
1608: PetscInt Nf;
1610: PetscFunctionBegin;
1612: PetscCall(PetscDSGetNumFields(ds, &Nf));
1613: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1614: if (fe->ops->integratebdjacobian) PetscCall((*fe->ops->integratebdjacobian)(ds, wf, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1615: PetscFunctionReturn(PETSC_SUCCESS);
1616: }
1618: /*@C
1619: PetscFEIntegrateHybridJacobian - Produce the boundary element Jacobian for a chunk of hybrid elements by quadrature integration
1621: Not Collective
1623: Input Parameters:
1624: + ds - The `PetscDS` specifying the discretizations and continuum functions for the output
1625: . dsIn - The `PetscDS` specifying the discretizations and continuum functions for the input
1626: . jtype - The type of matrix pointwise functions that should be used
1627: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1628: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1629: . Ne - The number of elements in the chunk
1630: . fgeom - The face geometry for each cell in the chunk
1631: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1632: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1633: . probAux - The `PetscDS` specifying the auxiliary discretizations
1634: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1635: . t - The time
1636: - u_tShift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1638: Output Parameter
1639: . elemMat - the element matrices for the Jacobian from each element
1641: Level: developer
1643: Note:
1644: .vb
1645: Loop over batch of elements (e):
1646: Loop over element matrix entries (f,fc,g,gc --> i,j):
1647: Loop over quadrature points (q):
1648: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1649: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1650: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1651: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1652: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1653: .ve
1655: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1656: @*/
1657: PetscErrorCode PetscFEIntegrateHybridJacobian(PetscDS ds, PetscDS dsIn, PetscFEJacobianType jtype, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1658: {
1659: PetscFE fe;
1660: PetscInt Nf;
1662: PetscFunctionBegin;
1664: PetscCall(PetscDSGetNumFields(ds, &Nf));
1665: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1666: if (fe->ops->integratehybridjacobian) PetscCall((*fe->ops->integratehybridjacobian)(ds, dsIn, jtype, key, s, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1667: PetscFunctionReturn(PETSC_SUCCESS);
1668: }
1670: /*@
1671: PetscFEGetHeightSubspace - Get the subspace of this space for a mesh point of a given height
1673: Input Parameters:
1674: + fe - The finite element space
1675: - height - The height of the `DMPLEX` point
1677: Output Parameter:
1678: . subfe - The subspace of this `PetscFE` space
1680: Level: advanced
1682: Note:
1683: For example, if we want the subspace of this space for a face, we would choose height = 1.
1685: .seealso: `PetscFECreateDefault()`
1686: @*/
1687: PetscErrorCode PetscFEGetHeightSubspace(PetscFE fe, PetscInt height, PetscFE *subfe)
1688: {
1689: PetscSpace P, subP;
1690: PetscDualSpace Q, subQ;
1691: PetscQuadrature subq;
1692: PetscFEType fetype;
1693: PetscInt dim, Nc;
1695: PetscFunctionBegin;
1698: if (height == 0) {
1699: *subfe = fe;
1700: PetscFunctionReturn(PETSC_SUCCESS);
1701: }
1702: PetscCall(PetscFEGetBasisSpace(fe, &P));
1703: PetscCall(PetscFEGetDualSpace(fe, &Q));
1704: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1705: PetscCall(PetscFEGetFaceQuadrature(fe, &subq));
1706: PetscCall(PetscDualSpaceGetDimension(Q, &dim));
1707: PetscCheck(height <= dim && height >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Asked for space at height %" PetscInt_FMT " for dimension %" PetscInt_FMT " space", height, dim);
1708: if (!fe->subspaces) PetscCall(PetscCalloc1(dim, &fe->subspaces));
1709: if (height <= dim) {
1710: if (!fe->subspaces[height - 1]) {
1711: PetscFE sub = NULL;
1712: const char *name;
1714: PetscCall(PetscSpaceGetHeightSubspace(P, height, &subP));
1715: PetscCall(PetscDualSpaceGetHeightSubspace(Q, height, &subQ));
1716: if (subQ) {
1717: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), &sub));
1718: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1719: PetscCall(PetscObjectSetName((PetscObject)sub, name));
1720: PetscCall(PetscFEGetType(fe, &fetype));
1721: PetscCall(PetscFESetType(sub, fetype));
1722: PetscCall(PetscFESetBasisSpace(sub, subP));
1723: PetscCall(PetscFESetDualSpace(sub, subQ));
1724: PetscCall(PetscFESetNumComponents(sub, Nc));
1725: PetscCall(PetscFESetUp(sub));
1726: PetscCall(PetscFESetQuadrature(sub, subq));
1727: }
1728: fe->subspaces[height - 1] = sub;
1729: }
1730: *subfe = fe->subspaces[height - 1];
1731: } else {
1732: *subfe = NULL;
1733: }
1734: PetscFunctionReturn(PETSC_SUCCESS);
1735: }
1737: /*@
1738: PetscFERefine - Create a "refined" `PetscFE` object that refines the reference cell into smaller copies. This is typically used
1739: to precondition a higher order method with a lower order method on a refined mesh having the same number of dofs (but more
1740: sparsity). It is also used to create an interpolation between regularly refined meshes.
1742: Collective
1744: Input Parameter:
1745: . fe - The initial `PetscFE`
1747: Output Parameter:
1748: . feRef - The refined `PetscFE`
1750: Level: advanced
1752: .seealso: `PetscFEType`, `PetscFECreate()`, `PetscFESetType()`
1753: @*/
1754: PetscErrorCode PetscFERefine(PetscFE fe, PetscFE *feRef)
1755: {
1756: PetscSpace P, Pref;
1757: PetscDualSpace Q, Qref;
1758: DM K, Kref;
1759: PetscQuadrature q, qref;
1760: const PetscReal *v0, *jac;
1761: PetscInt numComp, numSubelements;
1762: PetscInt cStart, cEnd, c;
1763: PetscDualSpace *cellSpaces;
1765: PetscFunctionBegin;
1766: PetscCall(PetscFEGetBasisSpace(fe, &P));
1767: PetscCall(PetscFEGetDualSpace(fe, &Q));
1768: PetscCall(PetscFEGetQuadrature(fe, &q));
1769: PetscCall(PetscDualSpaceGetDM(Q, &K));
1770: /* Create space */
1771: PetscCall(PetscObjectReference((PetscObject)P));
1772: Pref = P;
1773: /* Create dual space */
1774: PetscCall(PetscDualSpaceDuplicate(Q, &Qref));
1775: PetscCall(PetscDualSpaceSetType(Qref, PETSCDUALSPACEREFINED));
1776: PetscCall(DMRefine(K, PetscObjectComm((PetscObject)fe), &Kref));
1777: PetscCall(PetscDualSpaceSetDM(Qref, Kref));
1778: PetscCall(DMPlexGetHeightStratum(Kref, 0, &cStart, &cEnd));
1779: PetscCall(PetscMalloc1(cEnd - cStart, &cellSpaces));
1780: /* TODO: fix for non-uniform refinement */
1781: for (c = 0; c < cEnd - cStart; c++) cellSpaces[c] = Q;
1782: PetscCall(PetscDualSpaceRefinedSetCellSpaces(Qref, cellSpaces));
1783: PetscCall(PetscFree(cellSpaces));
1784: PetscCall(DMDestroy(&Kref));
1785: PetscCall(PetscDualSpaceSetUp(Qref));
1786: /* Create element */
1787: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), feRef));
1788: PetscCall(PetscFESetType(*feRef, PETSCFECOMPOSITE));
1789: PetscCall(PetscFESetBasisSpace(*feRef, Pref));
1790: PetscCall(PetscFESetDualSpace(*feRef, Qref));
1791: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1792: PetscCall(PetscFESetNumComponents(*feRef, numComp));
1793: PetscCall(PetscFESetUp(*feRef));
1794: PetscCall(PetscSpaceDestroy(&Pref));
1795: PetscCall(PetscDualSpaceDestroy(&Qref));
1796: /* Create quadrature */
1797: PetscCall(PetscFECompositeGetMapping(*feRef, &numSubelements, &v0, &jac, NULL));
1798: PetscCall(PetscQuadratureExpandComposite(q, numSubelements, v0, jac, &qref));
1799: PetscCall(PetscFESetQuadrature(*feRef, qref));
1800: PetscCall(PetscQuadratureDestroy(&qref));
1801: PetscFunctionReturn(PETSC_SUCCESS);
1802: }
1804: static PetscErrorCode PetscFESetDefaultName_Private(PetscFE fe)
1805: {
1806: PetscSpace P;
1807: PetscDualSpace Q;
1808: DM K;
1809: DMPolytopeType ct;
1810: PetscInt degree;
1811: char name[64];
1813: PetscFunctionBegin;
1814: PetscCall(PetscFEGetBasisSpace(fe, &P));
1815: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
1816: PetscCall(PetscFEGetDualSpace(fe, &Q));
1817: PetscCall(PetscDualSpaceGetDM(Q, &K));
1818: PetscCall(DMPlexGetCellType(K, 0, &ct));
1819: switch (ct) {
1820: case DM_POLYTOPE_SEGMENT:
1821: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1822: case DM_POLYTOPE_QUADRILATERAL:
1823: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1824: case DM_POLYTOPE_HEXAHEDRON:
1825: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1826: PetscCall(PetscSNPrintf(name, sizeof(name), "Q%" PetscInt_FMT, degree));
1827: break;
1828: case DM_POLYTOPE_TRIANGLE:
1829: case DM_POLYTOPE_TETRAHEDRON:
1830: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT, degree));
1831: break;
1832: case DM_POLYTOPE_TRI_PRISM:
1833: case DM_POLYTOPE_TRI_PRISM_TENSOR:
1834: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT "xQ%" PetscInt_FMT, degree, degree));
1835: break;
1836: default:
1837: PetscCall(PetscSNPrintf(name, sizeof(name), "FE"));
1838: }
1839: PetscCall(PetscFESetName(fe, name));
1840: PetscFunctionReturn(PETSC_SUCCESS);
1841: }
1843: /*@
1844: PetscFECreateFromSpaces - Create a `PetscFE` from the basis and dual spaces
1846: Collective
1848: Input Parameters:
1849: + P - The basis space
1850: . Q - The dual space
1851: . q - The cell quadrature
1852: - fq - The face quadrature
1854: Output Parameter:
1855: . fem - The `PetscFE` object
1857: Level: beginner
1859: Note:
1860: The `PetscFE` takes ownership of these spaces by calling destroy on each. They should not be used after this call, and for borrowed references from `PetscFEGetSpace()` and the like, the caller must use `PetscObjectReference` before this call.
1862: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`,
1863: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
1864: @*/
1865: PetscErrorCode PetscFECreateFromSpaces(PetscSpace P, PetscDualSpace Q, PetscQuadrature q, PetscQuadrature fq, PetscFE *fem)
1866: {
1867: PetscInt Nc;
1868: const char *prefix;
1870: PetscFunctionBegin;
1871: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)P), fem));
1872: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)P, &prefix));
1873: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)*fem, prefix));
1874: PetscCall(PetscFESetType(*fem, PETSCFEBASIC));
1875: PetscCall(PetscFESetBasisSpace(*fem, P));
1876: PetscCall(PetscFESetDualSpace(*fem, Q));
1877: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
1878: PetscCall(PetscFESetNumComponents(*fem, Nc));
1879: PetscCall(PetscFESetUp(*fem));
1880: PetscCall(PetscSpaceDestroy(&P));
1881: PetscCall(PetscDualSpaceDestroy(&Q));
1882: PetscCall(PetscFESetQuadrature(*fem, q));
1883: PetscCall(PetscFESetFaceQuadrature(*fem, fq));
1884: PetscCall(PetscQuadratureDestroy(&q));
1885: PetscCall(PetscQuadratureDestroy(&fq));
1886: PetscCall(PetscFESetDefaultName_Private(*fem));
1887: PetscFunctionReturn(PETSC_SUCCESS);
1888: }
1890: static PetscErrorCode PetscFECreate_Internal(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt degree, PetscInt qorder, PetscBool setFromOptions, PetscFE *fem)
1891: {
1892: DM K;
1893: PetscSpace P;
1894: PetscDualSpace Q;
1895: PetscQuadrature q, fq;
1896: PetscBool tensor;
1898: PetscFunctionBegin;
1901: switch (ct) {
1902: case DM_POLYTOPE_SEGMENT:
1903: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1904: case DM_POLYTOPE_QUADRILATERAL:
1905: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1906: case DM_POLYTOPE_HEXAHEDRON:
1907: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1908: tensor = PETSC_TRUE;
1909: break;
1910: default:
1911: tensor = PETSC_FALSE;
1912: }
1913: /* Create space */
1914: PetscCall(PetscSpaceCreate(comm, &P));
1915: PetscCall(PetscSpaceSetType(P, PETSCSPACEPOLYNOMIAL));
1916: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)P, prefix));
1917: PetscCall(PetscSpacePolynomialSetTensor(P, tensor));
1918: PetscCall(PetscSpaceSetNumComponents(P, Nc));
1919: PetscCall(PetscSpaceSetNumVariables(P, dim));
1920: if (degree >= 0) {
1921: PetscCall(PetscSpaceSetDegree(P, degree, PETSC_DETERMINE));
1922: if (ct == DM_POLYTOPE_TRI_PRISM || ct == DM_POLYTOPE_TRI_PRISM_TENSOR) {
1923: PetscSpace Pend, Pside;
1925: PetscCall(PetscSpaceCreate(comm, &Pend));
1926: PetscCall(PetscSpaceSetType(Pend, PETSCSPACEPOLYNOMIAL));
1927: PetscCall(PetscSpacePolynomialSetTensor(Pend, PETSC_FALSE));
1928: PetscCall(PetscSpaceSetNumComponents(Pend, Nc));
1929: PetscCall(PetscSpaceSetNumVariables(Pend, dim - 1));
1930: PetscCall(PetscSpaceSetDegree(Pend, degree, PETSC_DETERMINE));
1931: PetscCall(PetscSpaceCreate(comm, &Pside));
1932: PetscCall(PetscSpaceSetType(Pside, PETSCSPACEPOLYNOMIAL));
1933: PetscCall(PetscSpacePolynomialSetTensor(Pside, PETSC_FALSE));
1934: PetscCall(PetscSpaceSetNumComponents(Pside, 1));
1935: PetscCall(PetscSpaceSetNumVariables(Pside, 1));
1936: PetscCall(PetscSpaceSetDegree(Pside, degree, PETSC_DETERMINE));
1937: PetscCall(PetscSpaceSetType(P, PETSCSPACETENSOR));
1938: PetscCall(PetscSpaceTensorSetNumSubspaces(P, 2));
1939: PetscCall(PetscSpaceTensorSetSubspace(P, 0, Pend));
1940: PetscCall(PetscSpaceTensorSetSubspace(P, 1, Pside));
1941: PetscCall(PetscSpaceDestroy(&Pend));
1942: PetscCall(PetscSpaceDestroy(&Pside));
1943: }
1944: }
1945: if (setFromOptions) PetscCall(PetscSpaceSetFromOptions(P));
1946: PetscCall(PetscSpaceSetUp(P));
1947: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
1948: PetscCall(PetscSpacePolynomialGetTensor(P, &tensor));
1949: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
1950: /* Create dual space */
1951: PetscCall(PetscDualSpaceCreate(comm, &Q));
1952: PetscCall(PetscDualSpaceSetType(Q, PETSCDUALSPACELAGRANGE));
1953: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)Q, prefix));
1954: PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &K));
1955: PetscCall(PetscDualSpaceSetDM(Q, K));
1956: PetscCall(DMDestroy(&K));
1957: PetscCall(PetscDualSpaceSetNumComponents(Q, Nc));
1958: PetscCall(PetscDualSpaceSetOrder(Q, degree));
1959: /* TODO For some reason, we need a tensor dualspace with wedges */
1960: PetscCall(PetscDualSpaceLagrangeSetTensor(Q, (tensor || (ct == DM_POLYTOPE_TRI_PRISM)) ? PETSC_TRUE : PETSC_FALSE));
1961: if (setFromOptions) PetscCall(PetscDualSpaceSetFromOptions(Q));
1962: PetscCall(PetscDualSpaceSetUp(Q));
1963: /* Create quadrature */
1964: qorder = qorder >= 0 ? qorder : degree;
1965: if (setFromOptions) {
1966: PetscObjectOptionsBegin((PetscObject)P);
1967: PetscCall(PetscOptionsBoundedInt("-petscfe_default_quadrature_order", "Quadrature order is one less than quadrature points per edge", "PetscFECreateDefault", qorder, &qorder, NULL, 0));
1968: PetscOptionsEnd();
1969: }
1970: PetscCall(PetscDTCreateDefaultQuadrature(ct, qorder, &q, &fq));
1971: /* Create finite element */
1972: PetscCall(PetscFECreateFromSpaces(P, Q, q, fq, fem));
1973: if (setFromOptions) PetscCall(PetscFESetFromOptions(*fem));
1974: PetscFunctionReturn(PETSC_SUCCESS);
1975: }
1977: /*@C
1978: PetscFECreateDefault - Create a `PetscFE` for basic FEM computation
1980: Collective
1982: Input Parameters:
1983: + comm - The MPI comm
1984: . dim - The spatial dimension
1985: . Nc - The number of components
1986: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
1987: . prefix - The options prefix, or `NULL`
1988: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
1990: Output Parameter:
1991: . fem - The `PetscFE` object
1993: Level: beginner
1995: Note:
1996: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
1998: .seealso: `PetscFECreateLagrange()`, `PetscFECreateByCell()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
1999: @*/
2000: PetscErrorCode PetscFECreateDefault(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, const char prefix[], PetscInt qorder, PetscFE *fem)
2001: {
2002: PetscFunctionBegin;
2003: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2004: PetscFunctionReturn(PETSC_SUCCESS);
2005: }
2007: /*@C
2008: PetscFECreateByCell - Create a `PetscFE` for basic FEM computation
2010: Collective
2012: Input Parameters:
2013: + comm - The MPI comm
2014: . dim - The spatial dimension
2015: . Nc - The number of components
2016: . ct - The celltype of the reference cell
2017: . prefix - The options prefix, or `NULL`
2018: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2020: Output Parameter:
2021: . fem - The `PetscFE` object
2023: Level: beginner
2025: Note:
2026: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2028: .seealso: `PetscFECreateDefault()`, `PetscFECreateLagrange()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2029: @*/
2030: PetscErrorCode PetscFECreateByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt qorder, PetscFE *fem)
2031: {
2032: PetscFunctionBegin;
2033: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2034: PetscFunctionReturn(PETSC_SUCCESS);
2035: }
2037: /*@
2038: PetscFECreateLagrange - Create a `PetscFE` for the basic Lagrange space of degree k
2040: Collective
2042: Input Parameters:
2043: + comm - The MPI comm
2044: . dim - The spatial dimension
2045: . Nc - The number of components
2046: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2047: . k - The degree k of the space
2048: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2050: Output Parameter:
2051: . fem - The `PetscFE` object
2053: Level: beginner
2055: Note:
2056: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2058: .seealso: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2059: @*/
2060: PetscErrorCode PetscFECreateLagrange(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, PetscInt k, PetscInt qorder, PetscFE *fem)
2061: {
2062: PetscFunctionBegin;
2063: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), NULL, k, qorder, PETSC_FALSE, fem));
2064: PetscFunctionReturn(PETSC_SUCCESS);
2065: }
2067: /*@
2068: PetscFECreateLagrangeByCell - Create a `PetscFE` for the basic Lagrange space of degree k
2070: Collective
2072: Input Parameters:
2073: + comm - The MPI comm
2074: . dim - The spatial dimension
2075: . Nc - The number of components
2076: . ct - The celltype of the reference cell
2077: . k - The degree k of the space
2078: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2080: Output Parameter:
2081: . fem - The `PetscFE` object
2083: Level: beginner
2085: Note:
2086: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2088: .seealso: `PetscFECreateLagrange()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2089: @*/
2090: PetscErrorCode PetscFECreateLagrangeByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, PetscInt k, PetscInt qorder, PetscFE *fem)
2091: {
2092: PetscFunctionBegin;
2093: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, NULL, k, qorder, PETSC_FALSE, fem));
2094: PetscFunctionReturn(PETSC_SUCCESS);
2095: }
2097: /*@C
2098: PetscFESetName - Names the `PetscFE` and its subobjects
2100: Not Collective
2102: Input Parameters:
2103: + fe - The `PetscFE`
2104: - name - The name
2106: Level: intermediate
2108: .seealso: `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2109: @*/
2110: PetscErrorCode PetscFESetName(PetscFE fe, const char name[])
2111: {
2112: PetscSpace P;
2113: PetscDualSpace Q;
2115: PetscFunctionBegin;
2116: PetscCall(PetscFEGetBasisSpace(fe, &P));
2117: PetscCall(PetscFEGetDualSpace(fe, &Q));
2118: PetscCall(PetscObjectSetName((PetscObject)fe, name));
2119: PetscCall(PetscObjectSetName((PetscObject)P, name));
2120: PetscCall(PetscObjectSetName((PetscObject)Q, name));
2121: PetscFunctionReturn(PETSC_SUCCESS);
2122: }
2124: PetscErrorCode PetscFEEvaluateFieldJets_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2125: {
2126: PetscInt dOffset = 0, fOffset = 0, f, g;
2128: for (f = 0; f < Nf; ++f) {
2129: PetscCheck(r < T[f]->Nr, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Replica number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", r, T[f]->Nr);
2130: PetscCheck(q < T[f]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Point number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", q, T[f]->Np);
2131: PetscFE fe;
2132: const PetscInt k = ds->jetDegree[f];
2133: const PetscInt cdim = T[f]->cdim;
2134: const PetscInt dE = fegeom->dimEmbed;
2135: const PetscInt Nq = T[f]->Np;
2136: const PetscInt Nbf = T[f]->Nb;
2137: const PetscInt Ncf = T[f]->Nc;
2138: const PetscReal *Bq = &T[f]->T[0][(r * Nq + q) * Nbf * Ncf];
2139: const PetscReal *Dq = &T[f]->T[1][(r * Nq + q) * Nbf * Ncf * cdim];
2140: const PetscReal *Hq = k > 1 ? &T[f]->T[2][(r * Nq + q) * Nbf * Ncf * cdim * cdim] : NULL;
2141: PetscInt hOffset = 0, b, c, d;
2143: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
2144: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2145: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2146: for (b = 0; b < Nbf; ++b) {
2147: for (c = 0; c < Ncf; ++c) {
2148: const PetscInt cidx = b * Ncf + c;
2150: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2151: for (d = 0; d < cdim; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * cdim + d] * coefficients[dOffset + b];
2152: }
2153: }
2154: if (k > 1) {
2155: for (g = 0; g < Nf; ++g) hOffset += T[g]->Nc * dE;
2156: for (d = 0; d < dE * dE * Ncf; ++d) u_x[hOffset + fOffset * dE * dE + d] = 0.0;
2157: for (b = 0; b < Nbf; ++b) {
2158: for (c = 0; c < Ncf; ++c) {
2159: const PetscInt cidx = b * Ncf + c;
2161: for (d = 0; d < cdim * cdim; ++d) u_x[hOffset + (fOffset + c) * dE * dE + d] += Hq[cidx * cdim * cdim + d] * coefficients[dOffset + b];
2162: }
2163: }
2164: PetscCall(PetscFEPushforwardHessian(fe, fegeom, 1, &u_x[hOffset + fOffset * dE * dE]));
2165: }
2166: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2167: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * dE]));
2168: if (u_t) {
2169: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2170: for (b = 0; b < Nbf; ++b) {
2171: for (c = 0; c < Ncf; ++c) {
2172: const PetscInt cidx = b * Ncf + c;
2174: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2175: }
2176: }
2177: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2178: }
2179: fOffset += Ncf;
2180: dOffset += Nbf;
2181: }
2182: return PETSC_SUCCESS;
2183: }
2185: PetscErrorCode PetscFEEvaluateFieldJets_Hybrid_Internal(PetscDS ds, PetscInt Nf, PetscInt rc, PetscInt qc, PetscTabulation Tab[], const PetscInt rf[], const PetscInt qf[], PetscTabulation Tabf[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2186: {
2187: PetscInt dOffset = 0, fOffset = 0, f, g;
2189: /* f is the field number in the DS, g is the field number in u[] */
2190: for (f = 0, g = 0; f < Nf; ++f) {
2191: PetscBool isCohesive;
2192: PetscInt Ns, s;
2194: if (!Tab[f]) continue;
2195: PetscCall(PetscDSGetCohesive(ds, f, &isCohesive));
2196: Ns = isCohesive ? 1 : 2;
2197: {
2198: PetscTabulation T = isCohesive ? Tab[f] : Tabf[f];
2199: PetscFE fe = (PetscFE)ds->disc[f];
2200: const PetscInt dEt = T->cdim;
2201: const PetscInt dE = fegeom->dimEmbed;
2202: const PetscInt Nq = T->Np;
2203: const PetscInt Nbf = T->Nb;
2204: const PetscInt Ncf = T->Nc;
2206: for (s = 0; s < Ns; ++s, ++g) {
2207: const PetscInt r = isCohesive ? rc : rf[s];
2208: const PetscInt q = isCohesive ? qc : qf[s];
2209: const PetscReal *Bq = &T->T[0][(r * Nq + q) * Nbf * Ncf];
2210: const PetscReal *Dq = &T->T[1][(r * Nq + q) * Nbf * Ncf * dEt];
2211: PetscInt b, c, d;
2213: PetscCheck(r < T->Nr, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " Side %" PetscInt_FMT " Replica number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", f, s, r, T->Nr);
2214: PetscCheck(q < T->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " Side %" PetscInt_FMT " Point number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", f, s, q, T->Np);
2215: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2216: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2217: for (b = 0; b < Nbf; ++b) {
2218: for (c = 0; c < Ncf; ++c) {
2219: const PetscInt cidx = b * Ncf + c;
2221: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2222: for (d = 0; d < dEt; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * dEt + d] * coefficients[dOffset + b];
2223: }
2224: }
2225: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2226: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * dE]));
2227: if (u_t) {
2228: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2229: for (b = 0; b < Nbf; ++b) {
2230: for (c = 0; c < Ncf; ++c) {
2231: const PetscInt cidx = b * Ncf + c;
2233: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2234: }
2235: }
2236: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2237: }
2238: fOffset += Ncf;
2239: dOffset += Nbf;
2240: }
2241: }
2242: }
2243: return PETSC_SUCCESS;
2244: }
2246: PetscErrorCode PetscFEEvaluateFaceFields_Internal(PetscDS prob, PetscInt field, PetscInt faceLoc, const PetscScalar coefficients[], PetscScalar u[])
2247: {
2248: PetscFE fe;
2249: PetscTabulation Tc;
2250: PetscInt b, c;
2252: if (!prob) return PETSC_SUCCESS;
2253: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2254: PetscCall(PetscFEGetFaceCentroidTabulation(fe, &Tc));
2255: {
2256: const PetscReal *faceBasis = Tc->T[0];
2257: const PetscInt Nb = Tc->Nb;
2258: const PetscInt Nc = Tc->Nc;
2260: for (c = 0; c < Nc; ++c) u[c] = 0.0;
2261: for (b = 0; b < Nb; ++b) {
2262: for (c = 0; c < Nc; ++c) u[c] += coefficients[b] * faceBasis[(faceLoc * Nb + b) * Nc + c];
2263: }
2264: }
2265: return PETSC_SUCCESS;
2266: }
2268: PetscErrorCode PetscFEUpdateElementVec_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscInt e, PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2269: {
2270: PetscFEGeom pgeom;
2271: const PetscInt dEt = T->cdim;
2272: const PetscInt dE = fegeom->dimEmbed;
2273: const PetscInt Nq = T->Np;
2274: const PetscInt Nb = T->Nb;
2275: const PetscInt Nc = T->Nc;
2276: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2277: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dEt];
2278: PetscInt q, b, c, d;
2280: for (q = 0; q < Nq; ++q) {
2281: for (b = 0; b < Nb; ++b) {
2282: for (c = 0; c < Nc; ++c) {
2283: const PetscInt bcidx = b * Nc + c;
2285: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2286: for (d = 0; d < dEt; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dEt + bcidx * dEt + d];
2287: for (d = dEt; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = 0.0;
2288: }
2289: }
2290: PetscCall(PetscFEGeomGetCellPoint(fegeom, e, q, &pgeom));
2291: PetscCall(PetscFEPushforward(fe, &pgeom, Nb, tmpBasis));
2292: PetscCall(PetscFEPushforwardGradient(fe, &pgeom, Nb, tmpBasisDer));
2293: for (b = 0; b < Nb; ++b) {
2294: for (c = 0; c < Nc; ++c) {
2295: const PetscInt bcidx = b * Nc + c;
2296: const PetscInt qcidx = q * Nc + c;
2298: elemVec[b] += tmpBasis[bcidx] * f0[qcidx];
2299: for (d = 0; d < dE; ++d) elemVec[b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2300: }
2301: }
2302: }
2303: return PETSC_SUCCESS;
2304: }
2306: PetscErrorCode PetscFEUpdateElementVec_Hybrid_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscInt s, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2307: {
2308: const PetscInt dE = T->cdim;
2309: const PetscInt Nq = T->Np;
2310: const PetscInt Nb = T->Nb;
2311: const PetscInt Nc = T->Nc;
2312: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2313: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dE];
2314: PetscInt q, b, c, d;
2316: for (q = 0; q < Nq; ++q) {
2317: for (b = 0; b < Nb; ++b) {
2318: for (c = 0; c < Nc; ++c) {
2319: const PetscInt bcidx = b * Nc + c;
2321: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2322: for (d = 0; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dE + bcidx * dE + d];
2323: }
2324: }
2325: PetscCall(PetscFEPushforward(fe, fegeom, Nb, tmpBasis));
2326: // TODO This is currently broken since we do not pull the geometry down to the lower dimension
2327: // PetscCall(PetscFEPushforwardGradient(fe, fegeom, Nb, tmpBasisDer));
2328: for (b = 0; b < Nb; ++b) {
2329: for (c = 0; c < Nc; ++c) {
2330: const PetscInt bcidx = b * Nc + c;
2331: const PetscInt qcidx = q * Nc + c;
2333: elemVec[Nb * s + b] += tmpBasis[bcidx] * f0[qcidx];
2334: for (d = 0; d < dE; ++d) elemVec[Nb * s + b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2335: }
2336: }
2337: }
2338: return PETSC_SUCCESS;
2339: }
2341: PetscErrorCode PetscFEUpdateElementMat_Internal(PetscFE feI, PetscFE feJ, PetscInt r, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2342: {
2343: const PetscInt cdim = TI->cdim;
2344: const PetscInt dE = fegeom->dimEmbed;
2345: const PetscInt NqI = TI->Np;
2346: const PetscInt NbI = TI->Nb;
2347: const PetscInt NcI = TI->Nc;
2348: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2349: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * cdim];
2350: const PetscInt NqJ = TJ->Np;
2351: const PetscInt NbJ = TJ->Nb;
2352: const PetscInt NcJ = TJ->Nc;
2353: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2354: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * cdim];
2355: PetscInt f, fc, g, gc, df, dg;
2357: for (f = 0; f < NbI; ++f) {
2358: for (fc = 0; fc < NcI; ++fc) {
2359: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2361: tmpBasisI[fidx] = basisI[fidx];
2362: for (df = 0; df < cdim; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * cdim + df];
2363: }
2364: }
2365: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2366: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2367: for (g = 0; g < NbJ; ++g) {
2368: for (gc = 0; gc < NcJ; ++gc) {
2369: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2371: tmpBasisJ[gidx] = basisJ[gidx];
2372: for (dg = 0; dg < cdim; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * cdim + dg];
2373: }
2374: }
2375: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2376: PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2377: for (f = 0; f < NbI; ++f) {
2378: for (fc = 0; fc < NcI; ++fc) {
2379: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2380: const PetscInt i = offsetI + f; /* Element matrix row */
2381: for (g = 0; g < NbJ; ++g) {
2382: for (gc = 0; gc < NcJ; ++gc) {
2383: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2384: const PetscInt j = offsetJ + g; /* Element matrix column */
2385: const PetscInt fOff = eOffset + i * totDim + j;
2387: elemMat[fOff] += tmpBasisI[fidx] * g0[fc * NcJ + gc] * tmpBasisJ[gidx];
2388: for (df = 0; df < dE; ++df) {
2389: elemMat[fOff] += tmpBasisI[fidx] * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2390: elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * tmpBasisJ[gidx];
2391: for (dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2392: }
2393: }
2394: }
2395: }
2396: }
2397: return PETSC_SUCCESS;
2398: }
2400: PetscErrorCode PetscFEUpdateElementMat_Hybrid_Internal(PetscFE feI, PetscBool isHybridI, PetscFE feJ, PetscBool isHybridJ, PetscInt r, PetscInt s, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2401: {
2402: const PetscInt dE = TI->cdim;
2403: const PetscInt NqI = TI->Np;
2404: const PetscInt NbI = TI->Nb;
2405: const PetscInt NcI = TI->Nc;
2406: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2407: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * dE];
2408: const PetscInt NqJ = TJ->Np;
2409: const PetscInt NbJ = TJ->Nb;
2410: const PetscInt NcJ = TJ->Nc;
2411: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2412: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * dE];
2413: const PetscInt so = isHybridI ? 0 : s;
2414: const PetscInt to = isHybridJ ? 0 : s;
2415: PetscInt f, fc, g, gc, df, dg;
2417: for (f = 0; f < NbI; ++f) {
2418: for (fc = 0; fc < NcI; ++fc) {
2419: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2421: tmpBasisI[fidx] = basisI[fidx];
2422: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * dE + df];
2423: }
2424: }
2425: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2426: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2427: for (g = 0; g < NbJ; ++g) {
2428: for (gc = 0; gc < NcJ; ++gc) {
2429: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2431: tmpBasisJ[gidx] = basisJ[gidx];
2432: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * dE + dg];
2433: }
2434: }
2435: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2436: // TODO This is currently broken since we do not pull the geometry down to the lower dimension
2437: // PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2438: for (f = 0; f < NbI; ++f) {
2439: for (fc = 0; fc < NcI; ++fc) {
2440: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2441: const PetscInt i = offsetI + NbI * so + f; /* Element matrix row */
2442: for (g = 0; g < NbJ; ++g) {
2443: for (gc = 0; gc < NcJ; ++gc) {
2444: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2445: const PetscInt j = offsetJ + NbJ * to + g; /* Element matrix column */
2446: const PetscInt fOff = eOffset + i * totDim + j;
2448: elemMat[fOff] += tmpBasisI[fidx] * g0[fc * NcJ + gc] * tmpBasisJ[gidx];
2449: for (df = 0; df < dE; ++df) {
2450: elemMat[fOff] += tmpBasisI[fidx] * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2451: elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * tmpBasisJ[gidx];
2452: for (dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2453: }
2454: }
2455: }
2456: }
2457: }
2458: return PETSC_SUCCESS;
2459: }
2461: PetscErrorCode PetscFECreateCellGeometry(PetscFE fe, PetscQuadrature quad, PetscFEGeom *cgeom)
2462: {
2463: PetscDualSpace dsp;
2464: DM dm;
2465: PetscQuadrature quadDef;
2466: PetscInt dim, cdim, Nq;
2468: PetscFunctionBegin;
2469: PetscCall(PetscFEGetDualSpace(fe, &dsp));
2470: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
2471: PetscCall(DMGetDimension(dm, &dim));
2472: PetscCall(DMGetCoordinateDim(dm, &cdim));
2473: PetscCall(PetscFEGetQuadrature(fe, &quadDef));
2474: quad = quad ? quad : quadDef;
2475: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
2476: PetscCall(PetscMalloc1(Nq * cdim, &cgeom->v));
2477: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->J));
2478: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->invJ));
2479: PetscCall(PetscMalloc1(Nq, &cgeom->detJ));
2480: cgeom->dim = dim;
2481: cgeom->dimEmbed = cdim;
2482: cgeom->numCells = 1;
2483: cgeom->numPoints = Nq;
2484: PetscCall(DMPlexComputeCellGeometryFEM(dm, 0, quad, cgeom->v, cgeom->J, cgeom->invJ, cgeom->detJ));
2485: PetscFunctionReturn(PETSC_SUCCESS);
2486: }
2488: PetscErrorCode PetscFEDestroyCellGeometry(PetscFE fe, PetscFEGeom *cgeom)
2489: {
2490: PetscFunctionBegin;
2491: PetscCall(PetscFree(cgeom->v));
2492: PetscCall(PetscFree(cgeom->J));
2493: PetscCall(PetscFree(cgeom->invJ));
2494: PetscCall(PetscFree(cgeom->detJ));
2495: PetscFunctionReturn(PETSC_SUCCESS);
2496: }