Actual source code: baijfact5.c
2: /*
3: Factorization code for BAIJ format.
4: */
5: #include <../src/mat/impls/baij/seq/baij.h>
6: #include <petsc/private/kernels/blockinvert.h>
7: /*
8: Version for when blocks are 7 by 7
9: */
10: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_inplace(Mat C, Mat A, const MatFactorInfo *info)
11: {
12: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
13: IS isrow = b->row, isicol = b->icol;
14: const PetscInt *r, *ic, *bi = b->i, *bj = b->j, *ajtmp, *diag_offset = b->diag, *ai = a->i, *aj = a->j, *pj, *ajtmpold;
15: PetscInt i, j, n = a->mbs, nz, row, idx;
16: MatScalar *pv, *v, *rtmp, *pc, *w, *x;
17: MatScalar p1, p2, p3, p4, m1, m2, m3, m4, m5, m6, m7, m8, m9, x1, x2, x3, x4;
18: MatScalar p5, p6, p7, p8, p9, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16;
19: MatScalar x17, x18, x19, x20, x21, x22, x23, x24, x25, p10, p11, p12, p13, p14;
20: MatScalar p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, m10, m11, m12;
21: MatScalar m13, m14, m15, m16, m17, m18, m19, m20, m21, m22, m23, m24, m25;
22: MatScalar p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36;
23: MatScalar p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49;
24: MatScalar x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36;
25: MatScalar x37, x38, x39, x40, x41, x42, x43, x44, x45, x46, x47, x48, x49;
26: MatScalar m26, m27, m28, m29, m30, m31, m32, m33, m34, m35, m36;
27: MatScalar m37, m38, m39, m40, m41, m42, m43, m44, m45, m46, m47, m48, m49;
28: MatScalar *ba = b->a, *aa = a->a;
29: PetscReal shift = info->shiftamount;
30: PetscBool allowzeropivot, zeropivotdetected;
32: PetscFunctionBegin;
33: allowzeropivot = PetscNot(A->erroriffailure);
34: PetscCall(ISGetIndices(isrow, &r));
35: PetscCall(ISGetIndices(isicol, &ic));
36: PetscCall(PetscMalloc1(49 * (n + 1), &rtmp));
38: for (i = 0; i < n; i++) {
39: nz = bi[i + 1] - bi[i];
40: ajtmp = bj + bi[i];
41: for (j = 0; j < nz; j++) {
42: x = rtmp + 49 * ajtmp[j];
43: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
44: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
45: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
46: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
47: x[34] = x[35] = x[36] = x[37] = x[38] = x[39] = x[40] = x[41] = 0.0;
48: x[42] = x[43] = x[44] = x[45] = x[46] = x[47] = x[48] = 0.0;
49: }
50: /* load in initial (unfactored row) */
51: idx = r[i];
52: nz = ai[idx + 1] - ai[idx];
53: ajtmpold = aj + ai[idx];
54: v = aa + 49 * ai[idx];
55: for (j = 0; j < nz; j++) {
56: x = rtmp + 49 * ic[ajtmpold[j]];
57: x[0] = v[0];
58: x[1] = v[1];
59: x[2] = v[2];
60: x[3] = v[3];
61: x[4] = v[4];
62: x[5] = v[5];
63: x[6] = v[6];
64: x[7] = v[7];
65: x[8] = v[8];
66: x[9] = v[9];
67: x[10] = v[10];
68: x[11] = v[11];
69: x[12] = v[12];
70: x[13] = v[13];
71: x[14] = v[14];
72: x[15] = v[15];
73: x[16] = v[16];
74: x[17] = v[17];
75: x[18] = v[18];
76: x[19] = v[19];
77: x[20] = v[20];
78: x[21] = v[21];
79: x[22] = v[22];
80: x[23] = v[23];
81: x[24] = v[24];
82: x[25] = v[25];
83: x[26] = v[26];
84: x[27] = v[27];
85: x[28] = v[28];
86: x[29] = v[29];
87: x[30] = v[30];
88: x[31] = v[31];
89: x[32] = v[32];
90: x[33] = v[33];
91: x[34] = v[34];
92: x[35] = v[35];
93: x[36] = v[36];
94: x[37] = v[37];
95: x[38] = v[38];
96: x[39] = v[39];
97: x[40] = v[40];
98: x[41] = v[41];
99: x[42] = v[42];
100: x[43] = v[43];
101: x[44] = v[44];
102: x[45] = v[45];
103: x[46] = v[46];
104: x[47] = v[47];
105: x[48] = v[48];
106: v += 49;
107: }
108: row = *ajtmp++;
109: while (row < i) {
110: pc = rtmp + 49 * row;
111: p1 = pc[0];
112: p2 = pc[1];
113: p3 = pc[2];
114: p4 = pc[3];
115: p5 = pc[4];
116: p6 = pc[5];
117: p7 = pc[6];
118: p8 = pc[7];
119: p9 = pc[8];
120: p10 = pc[9];
121: p11 = pc[10];
122: p12 = pc[11];
123: p13 = pc[12];
124: p14 = pc[13];
125: p15 = pc[14];
126: p16 = pc[15];
127: p17 = pc[16];
128: p18 = pc[17];
129: p19 = pc[18];
130: p20 = pc[19];
131: p21 = pc[20];
132: p22 = pc[21];
133: p23 = pc[22];
134: p24 = pc[23];
135: p25 = pc[24];
136: p26 = pc[25];
137: p27 = pc[26];
138: p28 = pc[27];
139: p29 = pc[28];
140: p30 = pc[29];
141: p31 = pc[30];
142: p32 = pc[31];
143: p33 = pc[32];
144: p34 = pc[33];
145: p35 = pc[34];
146: p36 = pc[35];
147: p37 = pc[36];
148: p38 = pc[37];
149: p39 = pc[38];
150: p40 = pc[39];
151: p41 = pc[40];
152: p42 = pc[41];
153: p43 = pc[42];
154: p44 = pc[43];
155: p45 = pc[44];
156: p46 = pc[45];
157: p47 = pc[46];
158: p48 = pc[47];
159: p49 = pc[48];
160: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 || p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 || p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 || p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 || p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 || p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0 || p37 != 0.0 || p38 != 0.0 || p39 != 0.0 || p40 != 0.0 || p41 != 0.0 || p42 != 0.0 || p43 != 0.0 || p44 != 0.0 || p45 != 0.0 || p46 != 0.0 || p47 != 0.0 || p48 != 0.0 || p49 != 0.0) {
161: pv = ba + 49 * diag_offset[row];
162: pj = bj + diag_offset[row] + 1;
163: x1 = pv[0];
164: x2 = pv[1];
165: x3 = pv[2];
166: x4 = pv[3];
167: x5 = pv[4];
168: x6 = pv[5];
169: x7 = pv[6];
170: x8 = pv[7];
171: x9 = pv[8];
172: x10 = pv[9];
173: x11 = pv[10];
174: x12 = pv[11];
175: x13 = pv[12];
176: x14 = pv[13];
177: x15 = pv[14];
178: x16 = pv[15];
179: x17 = pv[16];
180: x18 = pv[17];
181: x19 = pv[18];
182: x20 = pv[19];
183: x21 = pv[20];
184: x22 = pv[21];
185: x23 = pv[22];
186: x24 = pv[23];
187: x25 = pv[24];
188: x26 = pv[25];
189: x27 = pv[26];
190: x28 = pv[27];
191: x29 = pv[28];
192: x30 = pv[29];
193: x31 = pv[30];
194: x32 = pv[31];
195: x33 = pv[32];
196: x34 = pv[33];
197: x35 = pv[34];
198: x36 = pv[35];
199: x37 = pv[36];
200: x38 = pv[37];
201: x39 = pv[38];
202: x40 = pv[39];
203: x41 = pv[40];
204: x42 = pv[41];
205: x43 = pv[42];
206: x44 = pv[43];
207: x45 = pv[44];
208: x46 = pv[45];
209: x47 = pv[46];
210: x48 = pv[47];
211: x49 = pv[48];
212: pc[0] = m1 = p1 * x1 + p8 * x2 + p15 * x3 + p22 * x4 + p29 * x5 + p36 * x6 + p43 * x7;
213: pc[1] = m2 = p2 * x1 + p9 * x2 + p16 * x3 + p23 * x4 + p30 * x5 + p37 * x6 + p44 * x7;
214: pc[2] = m3 = p3 * x1 + p10 * x2 + p17 * x3 + p24 * x4 + p31 * x5 + p38 * x6 + p45 * x7;
215: pc[3] = m4 = p4 * x1 + p11 * x2 + p18 * x3 + p25 * x4 + p32 * x5 + p39 * x6 + p46 * x7;
216: pc[4] = m5 = p5 * x1 + p12 * x2 + p19 * x3 + p26 * x4 + p33 * x5 + p40 * x6 + p47 * x7;
217: pc[5] = m6 = p6 * x1 + p13 * x2 + p20 * x3 + p27 * x4 + p34 * x5 + p41 * x6 + p48 * x7;
218: pc[6] = m7 = p7 * x1 + p14 * x2 + p21 * x3 + p28 * x4 + p35 * x5 + p42 * x6 + p49 * x7;
220: pc[7] = m8 = p1 * x8 + p8 * x9 + p15 * x10 + p22 * x11 + p29 * x12 + p36 * x13 + p43 * x14;
221: pc[8] = m9 = p2 * x8 + p9 * x9 + p16 * x10 + p23 * x11 + p30 * x12 + p37 * x13 + p44 * x14;
222: pc[9] = m10 = p3 * x8 + p10 * x9 + p17 * x10 + p24 * x11 + p31 * x12 + p38 * x13 + p45 * x14;
223: pc[10] = m11 = p4 * x8 + p11 * x9 + p18 * x10 + p25 * x11 + p32 * x12 + p39 * x13 + p46 * x14;
224: pc[11] = m12 = p5 * x8 + p12 * x9 + p19 * x10 + p26 * x11 + p33 * x12 + p40 * x13 + p47 * x14;
225: pc[12] = m13 = p6 * x8 + p13 * x9 + p20 * x10 + p27 * x11 + p34 * x12 + p41 * x13 + p48 * x14;
226: pc[13] = m14 = p7 * x8 + p14 * x9 + p21 * x10 + p28 * x11 + p35 * x12 + p42 * x13 + p49 * x14;
228: pc[14] = m15 = p1 * x15 + p8 * x16 + p15 * x17 + p22 * x18 + p29 * x19 + p36 * x20 + p43 * x21;
229: pc[15] = m16 = p2 * x15 + p9 * x16 + p16 * x17 + p23 * x18 + p30 * x19 + p37 * x20 + p44 * x21;
230: pc[16] = m17 = p3 * x15 + p10 * x16 + p17 * x17 + p24 * x18 + p31 * x19 + p38 * x20 + p45 * x21;
231: pc[17] = m18 = p4 * x15 + p11 * x16 + p18 * x17 + p25 * x18 + p32 * x19 + p39 * x20 + p46 * x21;
232: pc[18] = m19 = p5 * x15 + p12 * x16 + p19 * x17 + p26 * x18 + p33 * x19 + p40 * x20 + p47 * x21;
233: pc[19] = m20 = p6 * x15 + p13 * x16 + p20 * x17 + p27 * x18 + p34 * x19 + p41 * x20 + p48 * x21;
234: pc[20] = m21 = p7 * x15 + p14 * x16 + p21 * x17 + p28 * x18 + p35 * x19 + p42 * x20 + p49 * x21;
236: pc[21] = m22 = p1 * x22 + p8 * x23 + p15 * x24 + p22 * x25 + p29 * x26 + p36 * x27 + p43 * x28;
237: pc[22] = m23 = p2 * x22 + p9 * x23 + p16 * x24 + p23 * x25 + p30 * x26 + p37 * x27 + p44 * x28;
238: pc[23] = m24 = p3 * x22 + p10 * x23 + p17 * x24 + p24 * x25 + p31 * x26 + p38 * x27 + p45 * x28;
239: pc[24] = m25 = p4 * x22 + p11 * x23 + p18 * x24 + p25 * x25 + p32 * x26 + p39 * x27 + p46 * x28;
240: pc[25] = m26 = p5 * x22 + p12 * x23 + p19 * x24 + p26 * x25 + p33 * x26 + p40 * x27 + p47 * x28;
241: pc[26] = m27 = p6 * x22 + p13 * x23 + p20 * x24 + p27 * x25 + p34 * x26 + p41 * x27 + p48 * x28;
242: pc[27] = m28 = p7 * x22 + p14 * x23 + p21 * x24 + p28 * x25 + p35 * x26 + p42 * x27 + p49 * x28;
244: pc[28] = m29 = p1 * x29 + p8 * x30 + p15 * x31 + p22 * x32 + p29 * x33 + p36 * x34 + p43 * x35;
245: pc[29] = m30 = p2 * x29 + p9 * x30 + p16 * x31 + p23 * x32 + p30 * x33 + p37 * x34 + p44 * x35;
246: pc[30] = m31 = p3 * x29 + p10 * x30 + p17 * x31 + p24 * x32 + p31 * x33 + p38 * x34 + p45 * x35;
247: pc[31] = m32 = p4 * x29 + p11 * x30 + p18 * x31 + p25 * x32 + p32 * x33 + p39 * x34 + p46 * x35;
248: pc[32] = m33 = p5 * x29 + p12 * x30 + p19 * x31 + p26 * x32 + p33 * x33 + p40 * x34 + p47 * x35;
249: pc[33] = m34 = p6 * x29 + p13 * x30 + p20 * x31 + p27 * x32 + p34 * x33 + p41 * x34 + p48 * x35;
250: pc[34] = m35 = p7 * x29 + p14 * x30 + p21 * x31 + p28 * x32 + p35 * x33 + p42 * x34 + p49 * x35;
252: pc[35] = m36 = p1 * x36 + p8 * x37 + p15 * x38 + p22 * x39 + p29 * x40 + p36 * x41 + p43 * x42;
253: pc[36] = m37 = p2 * x36 + p9 * x37 + p16 * x38 + p23 * x39 + p30 * x40 + p37 * x41 + p44 * x42;
254: pc[37] = m38 = p3 * x36 + p10 * x37 + p17 * x38 + p24 * x39 + p31 * x40 + p38 * x41 + p45 * x42;
255: pc[38] = m39 = p4 * x36 + p11 * x37 + p18 * x38 + p25 * x39 + p32 * x40 + p39 * x41 + p46 * x42;
256: pc[39] = m40 = p5 * x36 + p12 * x37 + p19 * x38 + p26 * x39 + p33 * x40 + p40 * x41 + p47 * x42;
257: pc[40] = m41 = p6 * x36 + p13 * x37 + p20 * x38 + p27 * x39 + p34 * x40 + p41 * x41 + p48 * x42;
258: pc[41] = m42 = p7 * x36 + p14 * x37 + p21 * x38 + p28 * x39 + p35 * x40 + p42 * x41 + p49 * x42;
260: pc[42] = m43 = p1 * x43 + p8 * x44 + p15 * x45 + p22 * x46 + p29 * x47 + p36 * x48 + p43 * x49;
261: pc[43] = m44 = p2 * x43 + p9 * x44 + p16 * x45 + p23 * x46 + p30 * x47 + p37 * x48 + p44 * x49;
262: pc[44] = m45 = p3 * x43 + p10 * x44 + p17 * x45 + p24 * x46 + p31 * x47 + p38 * x48 + p45 * x49;
263: pc[45] = m46 = p4 * x43 + p11 * x44 + p18 * x45 + p25 * x46 + p32 * x47 + p39 * x48 + p46 * x49;
264: pc[46] = m47 = p5 * x43 + p12 * x44 + p19 * x45 + p26 * x46 + p33 * x47 + p40 * x48 + p47 * x49;
265: pc[47] = m48 = p6 * x43 + p13 * x44 + p20 * x45 + p27 * x46 + p34 * x47 + p41 * x48 + p48 * x49;
266: pc[48] = m49 = p7 * x43 + p14 * x44 + p21 * x45 + p28 * x46 + p35 * x47 + p42 * x48 + p49 * x49;
268: nz = bi[row + 1] - diag_offset[row] - 1;
269: pv += 49;
270: for (j = 0; j < nz; j++) {
271: x1 = pv[0];
272: x2 = pv[1];
273: x3 = pv[2];
274: x4 = pv[3];
275: x5 = pv[4];
276: x6 = pv[5];
277: x7 = pv[6];
278: x8 = pv[7];
279: x9 = pv[8];
280: x10 = pv[9];
281: x11 = pv[10];
282: x12 = pv[11];
283: x13 = pv[12];
284: x14 = pv[13];
285: x15 = pv[14];
286: x16 = pv[15];
287: x17 = pv[16];
288: x18 = pv[17];
289: x19 = pv[18];
290: x20 = pv[19];
291: x21 = pv[20];
292: x22 = pv[21];
293: x23 = pv[22];
294: x24 = pv[23];
295: x25 = pv[24];
296: x26 = pv[25];
297: x27 = pv[26];
298: x28 = pv[27];
299: x29 = pv[28];
300: x30 = pv[29];
301: x31 = pv[30];
302: x32 = pv[31];
303: x33 = pv[32];
304: x34 = pv[33];
305: x35 = pv[34];
306: x36 = pv[35];
307: x37 = pv[36];
308: x38 = pv[37];
309: x39 = pv[38];
310: x40 = pv[39];
311: x41 = pv[40];
312: x42 = pv[41];
313: x43 = pv[42];
314: x44 = pv[43];
315: x45 = pv[44];
316: x46 = pv[45];
317: x47 = pv[46];
318: x48 = pv[47];
319: x49 = pv[48];
320: x = rtmp + 49 * pj[j];
321: x[0] -= m1 * x1 + m8 * x2 + m15 * x3 + m22 * x4 + m29 * x5 + m36 * x6 + m43 * x7;
322: x[1] -= m2 * x1 + m9 * x2 + m16 * x3 + m23 * x4 + m30 * x5 + m37 * x6 + m44 * x7;
323: x[2] -= m3 * x1 + m10 * x2 + m17 * x3 + m24 * x4 + m31 * x5 + m38 * x6 + m45 * x7;
324: x[3] -= m4 * x1 + m11 * x2 + m18 * x3 + m25 * x4 + m32 * x5 + m39 * x6 + m46 * x7;
325: x[4] -= m5 * x1 + m12 * x2 + m19 * x3 + m26 * x4 + m33 * x5 + m40 * x6 + m47 * x7;
326: x[5] -= m6 * x1 + m13 * x2 + m20 * x3 + m27 * x4 + m34 * x5 + m41 * x6 + m48 * x7;
327: x[6] -= m7 * x1 + m14 * x2 + m21 * x3 + m28 * x4 + m35 * x5 + m42 * x6 + m49 * x7;
329: x[7] -= m1 * x8 + m8 * x9 + m15 * x10 + m22 * x11 + m29 * x12 + m36 * x13 + m43 * x14;
330: x[8] -= m2 * x8 + m9 * x9 + m16 * x10 + m23 * x11 + m30 * x12 + m37 * x13 + m44 * x14;
331: x[9] -= m3 * x8 + m10 * x9 + m17 * x10 + m24 * x11 + m31 * x12 + m38 * x13 + m45 * x14;
332: x[10] -= m4 * x8 + m11 * x9 + m18 * x10 + m25 * x11 + m32 * x12 + m39 * x13 + m46 * x14;
333: x[11] -= m5 * x8 + m12 * x9 + m19 * x10 + m26 * x11 + m33 * x12 + m40 * x13 + m47 * x14;
334: x[12] -= m6 * x8 + m13 * x9 + m20 * x10 + m27 * x11 + m34 * x12 + m41 * x13 + m48 * x14;
335: x[13] -= m7 * x8 + m14 * x9 + m21 * x10 + m28 * x11 + m35 * x12 + m42 * x13 + m49 * x14;
337: x[14] -= m1 * x15 + m8 * x16 + m15 * x17 + m22 * x18 + m29 * x19 + m36 * x20 + m43 * x21;
338: x[15] -= m2 * x15 + m9 * x16 + m16 * x17 + m23 * x18 + m30 * x19 + m37 * x20 + m44 * x21;
339: x[16] -= m3 * x15 + m10 * x16 + m17 * x17 + m24 * x18 + m31 * x19 + m38 * x20 + m45 * x21;
340: x[17] -= m4 * x15 + m11 * x16 + m18 * x17 + m25 * x18 + m32 * x19 + m39 * x20 + m46 * x21;
341: x[18] -= m5 * x15 + m12 * x16 + m19 * x17 + m26 * x18 + m33 * x19 + m40 * x20 + m47 * x21;
342: x[19] -= m6 * x15 + m13 * x16 + m20 * x17 + m27 * x18 + m34 * x19 + m41 * x20 + m48 * x21;
343: x[20] -= m7 * x15 + m14 * x16 + m21 * x17 + m28 * x18 + m35 * x19 + m42 * x20 + m49 * x21;
345: x[21] -= m1 * x22 + m8 * x23 + m15 * x24 + m22 * x25 + m29 * x26 + m36 * x27 + m43 * x28;
346: x[22] -= m2 * x22 + m9 * x23 + m16 * x24 + m23 * x25 + m30 * x26 + m37 * x27 + m44 * x28;
347: x[23] -= m3 * x22 + m10 * x23 + m17 * x24 + m24 * x25 + m31 * x26 + m38 * x27 + m45 * x28;
348: x[24] -= m4 * x22 + m11 * x23 + m18 * x24 + m25 * x25 + m32 * x26 + m39 * x27 + m46 * x28;
349: x[25] -= m5 * x22 + m12 * x23 + m19 * x24 + m26 * x25 + m33 * x26 + m40 * x27 + m47 * x28;
350: x[26] -= m6 * x22 + m13 * x23 + m20 * x24 + m27 * x25 + m34 * x26 + m41 * x27 + m48 * x28;
351: x[27] -= m7 * x22 + m14 * x23 + m21 * x24 + m28 * x25 + m35 * x26 + m42 * x27 + m49 * x28;
353: x[28] -= m1 * x29 + m8 * x30 + m15 * x31 + m22 * x32 + m29 * x33 + m36 * x34 + m43 * x35;
354: x[29] -= m2 * x29 + m9 * x30 + m16 * x31 + m23 * x32 + m30 * x33 + m37 * x34 + m44 * x35;
355: x[30] -= m3 * x29 + m10 * x30 + m17 * x31 + m24 * x32 + m31 * x33 + m38 * x34 + m45 * x35;
356: x[31] -= m4 * x29 + m11 * x30 + m18 * x31 + m25 * x32 + m32 * x33 + m39 * x34 + m46 * x35;
357: x[32] -= m5 * x29 + m12 * x30 + m19 * x31 + m26 * x32 + m33 * x33 + m40 * x34 + m47 * x35;
358: x[33] -= m6 * x29 + m13 * x30 + m20 * x31 + m27 * x32 + m34 * x33 + m41 * x34 + m48 * x35;
359: x[34] -= m7 * x29 + m14 * x30 + m21 * x31 + m28 * x32 + m35 * x33 + m42 * x34 + m49 * x35;
361: x[35] -= m1 * x36 + m8 * x37 + m15 * x38 + m22 * x39 + m29 * x40 + m36 * x41 + m43 * x42;
362: x[36] -= m2 * x36 + m9 * x37 + m16 * x38 + m23 * x39 + m30 * x40 + m37 * x41 + m44 * x42;
363: x[37] -= m3 * x36 + m10 * x37 + m17 * x38 + m24 * x39 + m31 * x40 + m38 * x41 + m45 * x42;
364: x[38] -= m4 * x36 + m11 * x37 + m18 * x38 + m25 * x39 + m32 * x40 + m39 * x41 + m46 * x42;
365: x[39] -= m5 * x36 + m12 * x37 + m19 * x38 + m26 * x39 + m33 * x40 + m40 * x41 + m47 * x42;
366: x[40] -= m6 * x36 + m13 * x37 + m20 * x38 + m27 * x39 + m34 * x40 + m41 * x41 + m48 * x42;
367: x[41] -= m7 * x36 + m14 * x37 + m21 * x38 + m28 * x39 + m35 * x40 + m42 * x41 + m49 * x42;
369: x[42] -= m1 * x43 + m8 * x44 + m15 * x45 + m22 * x46 + m29 * x47 + m36 * x48 + m43 * x49;
370: x[43] -= m2 * x43 + m9 * x44 + m16 * x45 + m23 * x46 + m30 * x47 + m37 * x48 + m44 * x49;
371: x[44] -= m3 * x43 + m10 * x44 + m17 * x45 + m24 * x46 + m31 * x47 + m38 * x48 + m45 * x49;
372: x[45] -= m4 * x43 + m11 * x44 + m18 * x45 + m25 * x46 + m32 * x47 + m39 * x48 + m46 * x49;
373: x[46] -= m5 * x43 + m12 * x44 + m19 * x45 + m26 * x46 + m33 * x47 + m40 * x48 + m47 * x49;
374: x[47] -= m6 * x43 + m13 * x44 + m20 * x45 + m27 * x46 + m34 * x47 + m41 * x48 + m48 * x49;
375: x[48] -= m7 * x43 + m14 * x44 + m21 * x45 + m28 * x46 + m35 * x47 + m42 * x48 + m49 * x49;
376: pv += 49;
377: }
378: PetscCall(PetscLogFlops(686.0 * nz + 637.0));
379: }
380: row = *ajtmp++;
381: }
382: /* finished row so stick it into b->a */
383: pv = ba + 49 * bi[i];
384: pj = bj + bi[i];
385: nz = bi[i + 1] - bi[i];
386: for (j = 0; j < nz; j++) {
387: x = rtmp + 49 * pj[j];
388: pv[0] = x[0];
389: pv[1] = x[1];
390: pv[2] = x[2];
391: pv[3] = x[3];
392: pv[4] = x[4];
393: pv[5] = x[5];
394: pv[6] = x[6];
395: pv[7] = x[7];
396: pv[8] = x[8];
397: pv[9] = x[9];
398: pv[10] = x[10];
399: pv[11] = x[11];
400: pv[12] = x[12];
401: pv[13] = x[13];
402: pv[14] = x[14];
403: pv[15] = x[15];
404: pv[16] = x[16];
405: pv[17] = x[17];
406: pv[18] = x[18];
407: pv[19] = x[19];
408: pv[20] = x[20];
409: pv[21] = x[21];
410: pv[22] = x[22];
411: pv[23] = x[23];
412: pv[24] = x[24];
413: pv[25] = x[25];
414: pv[26] = x[26];
415: pv[27] = x[27];
416: pv[28] = x[28];
417: pv[29] = x[29];
418: pv[30] = x[30];
419: pv[31] = x[31];
420: pv[32] = x[32];
421: pv[33] = x[33];
422: pv[34] = x[34];
423: pv[35] = x[35];
424: pv[36] = x[36];
425: pv[37] = x[37];
426: pv[38] = x[38];
427: pv[39] = x[39];
428: pv[40] = x[40];
429: pv[41] = x[41];
430: pv[42] = x[42];
431: pv[43] = x[43];
432: pv[44] = x[44];
433: pv[45] = x[45];
434: pv[46] = x[46];
435: pv[47] = x[47];
436: pv[48] = x[48];
437: pv += 49;
438: }
439: /* invert diagonal block */
440: w = ba + 49 * diag_offset[i];
441: PetscCall(PetscKernel_A_gets_inverse_A_7(w, shift, allowzeropivot, &zeropivotdetected));
442: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
443: }
445: PetscCall(PetscFree(rtmp));
446: PetscCall(ISRestoreIndices(isicol, &ic));
447: PetscCall(ISRestoreIndices(isrow, &r));
449: C->ops->solve = MatSolve_SeqBAIJ_7_inplace;
450: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_inplace;
451: C->assembled = PETSC_TRUE;
453: PetscCall(PetscLogFlops(1.333333333333 * 7 * 7 * 7 * b->mbs)); /* from inverting diagonal blocks */
454: PetscFunctionReturn(PETSC_SUCCESS);
455: }
457: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7(Mat B, Mat A, const MatFactorInfo *info)
458: {
459: Mat C = B;
460: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
461: IS isrow = b->row, isicol = b->icol;
462: const PetscInt *r, *ic;
463: PetscInt i, j, k, nz, nzL, row;
464: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
465: const PetscInt *ajtmp, *bjtmp, *bdiag = b->diag, *pj, bs2 = a->bs2;
466: MatScalar *rtmp, *pc, *mwork, *v, *pv, *aa = a->a;
467: PetscInt flg;
468: PetscReal shift = info->shiftamount;
469: PetscBool allowzeropivot, zeropivotdetected;
471: PetscFunctionBegin;
472: allowzeropivot = PetscNot(A->erroriffailure);
473: PetscCall(ISGetIndices(isrow, &r));
474: PetscCall(ISGetIndices(isicol, &ic));
476: /* generate work space needed by the factorization */
477: PetscCall(PetscMalloc2(bs2 * n, &rtmp, bs2, &mwork));
478: PetscCall(PetscArrayzero(rtmp, bs2 * n));
480: for (i = 0; i < n; i++) {
481: /* zero rtmp */
482: /* L part */
483: nz = bi[i + 1] - bi[i];
484: bjtmp = bj + bi[i];
485: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
487: /* U part */
488: nz = bdiag[i] - bdiag[i + 1];
489: bjtmp = bj + bdiag[i + 1] + 1;
490: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
492: /* load in initial (unfactored row) */
493: nz = ai[r[i] + 1] - ai[r[i]];
494: ajtmp = aj + ai[r[i]];
495: v = aa + bs2 * ai[r[i]];
496: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(rtmp + bs2 * ic[ajtmp[j]], v + bs2 * j, bs2));
498: /* elimination */
499: bjtmp = bj + bi[i];
500: nzL = bi[i + 1] - bi[i];
501: for (k = 0; k < nzL; k++) {
502: row = bjtmp[k];
503: pc = rtmp + bs2 * row;
504: for (flg = 0, j = 0; j < bs2; j++) {
505: if (pc[j] != 0.0) {
506: flg = 1;
507: break;
508: }
509: }
510: if (flg) {
511: pv = b->a + bs2 * bdiag[row];
512: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
513: PetscCall(PetscKernel_A_gets_A_times_B_7(pc, pv, mwork));
515: pj = b->j + bdiag[row + 1] + 1; /* beginning of U(row,:) */
516: pv = b->a + bs2 * (bdiag[row + 1] + 1);
517: nz = bdiag[row] - bdiag[row + 1] - 1; /* num of entries inU(row,:), excluding diag */
518: for (j = 0; j < nz; j++) {
519: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
520: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
521: v = rtmp + bs2 * pj[j];
522: PetscCall(PetscKernel_A_gets_A_minus_B_times_C_7(v, pc, pv));
523: pv += bs2;
524: }
525: PetscCall(PetscLogFlops(686.0 * nz + 637)); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
526: }
527: }
529: /* finished row so stick it into b->a */
530: /* L part */
531: pv = b->a + bs2 * bi[i];
532: pj = b->j + bi[i];
533: nz = bi[i + 1] - bi[i];
534: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
536: /* Mark diagonal and invert diagonal for simpler triangular solves */
537: pv = b->a + bs2 * bdiag[i];
538: pj = b->j + bdiag[i];
539: PetscCall(PetscArraycpy(pv, rtmp + bs2 * pj[0], bs2));
540: PetscCall(PetscKernel_A_gets_inverse_A_7(pv, shift, allowzeropivot, &zeropivotdetected));
541: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
543: /* U part */
544: pv = b->a + bs2 * (bdiag[i + 1] + 1);
545: pj = b->j + bdiag[i + 1] + 1;
546: nz = bdiag[i] - bdiag[i + 1] - 1;
547: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
548: }
550: PetscCall(PetscFree2(rtmp, mwork));
551: PetscCall(ISRestoreIndices(isicol, &ic));
552: PetscCall(ISRestoreIndices(isrow, &r));
554: C->ops->solve = MatSolve_SeqBAIJ_7;
555: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7;
556: C->assembled = PETSC_TRUE;
558: PetscCall(PetscLogFlops(1.333333333333 * 7 * 7 * 7 * n)); /* from inverting diagonal blocks */
559: PetscFunctionReturn(PETSC_SUCCESS);
560: }
562: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering_inplace(Mat C, Mat A, const MatFactorInfo *info)
563: {
564: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
565: PetscInt i, j, n = a->mbs, *bi = b->i, *bj = b->j;
566: PetscInt *ajtmpold, *ajtmp, nz, row;
567: PetscInt *diag_offset = b->diag, *ai = a->i, *aj = a->j, *pj;
568: MatScalar *pv, *v, *rtmp, *pc, *w, *x;
569: MatScalar x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
570: MatScalar x16, x17, x18, x19, x20, x21, x22, x23, x24, x25;
571: MatScalar p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15;
572: MatScalar p16, p17, p18, p19, p20, p21, p22, p23, p24, p25;
573: MatScalar m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13, m14, m15;
574: MatScalar m16, m17, m18, m19, m20, m21, m22, m23, m24, m25;
575: MatScalar p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36;
576: MatScalar p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49;
577: MatScalar x26, x27, x28, x29, x30, x31, x32, x33, x34, x35, x36;
578: MatScalar x37, x38, x39, x40, x41, x42, x43, x44, x45, x46, x47, x48, x49;
579: MatScalar m26, m27, m28, m29, m30, m31, m32, m33, m34, m35, m36;
580: MatScalar m37, m38, m39, m40, m41, m42, m43, m44, m45, m46, m47, m48, m49;
581: MatScalar *ba = b->a, *aa = a->a;
582: PetscReal shift = info->shiftamount;
583: PetscBool allowzeropivot, zeropivotdetected;
585: PetscFunctionBegin;
586: allowzeropivot = PetscNot(A->erroriffailure);
587: PetscCall(PetscMalloc1(49 * (n + 1), &rtmp));
588: for (i = 0; i < n; i++) {
589: nz = bi[i + 1] - bi[i];
590: ajtmp = bj + bi[i];
591: for (j = 0; j < nz; j++) {
592: x = rtmp + 49 * ajtmp[j];
593: x[0] = x[1] = x[2] = x[3] = x[4] = x[5] = x[6] = x[7] = x[8] = x[9] = 0.0;
594: x[10] = x[11] = x[12] = x[13] = x[14] = x[15] = x[16] = x[17] = 0.0;
595: x[18] = x[19] = x[20] = x[21] = x[22] = x[23] = x[24] = x[25] = 0.0;
596: x[26] = x[27] = x[28] = x[29] = x[30] = x[31] = x[32] = x[33] = 0.0;
597: x[34] = x[35] = x[36] = x[37] = x[38] = x[39] = x[40] = x[41] = 0.0;
598: x[42] = x[43] = x[44] = x[45] = x[46] = x[47] = x[48] = 0.0;
599: }
600: /* load in initial (unfactored row) */
601: nz = ai[i + 1] - ai[i];
602: ajtmpold = aj + ai[i];
603: v = aa + 49 * ai[i];
604: for (j = 0; j < nz; j++) {
605: x = rtmp + 49 * ajtmpold[j];
606: x[0] = v[0];
607: x[1] = v[1];
608: x[2] = v[2];
609: x[3] = v[3];
610: x[4] = v[4];
611: x[5] = v[5];
612: x[6] = v[6];
613: x[7] = v[7];
614: x[8] = v[8];
615: x[9] = v[9];
616: x[10] = v[10];
617: x[11] = v[11];
618: x[12] = v[12];
619: x[13] = v[13];
620: x[14] = v[14];
621: x[15] = v[15];
622: x[16] = v[16];
623: x[17] = v[17];
624: x[18] = v[18];
625: x[19] = v[19];
626: x[20] = v[20];
627: x[21] = v[21];
628: x[22] = v[22];
629: x[23] = v[23];
630: x[24] = v[24];
631: x[25] = v[25];
632: x[26] = v[26];
633: x[27] = v[27];
634: x[28] = v[28];
635: x[29] = v[29];
636: x[30] = v[30];
637: x[31] = v[31];
638: x[32] = v[32];
639: x[33] = v[33];
640: x[34] = v[34];
641: x[35] = v[35];
642: x[36] = v[36];
643: x[37] = v[37];
644: x[38] = v[38];
645: x[39] = v[39];
646: x[40] = v[40];
647: x[41] = v[41];
648: x[42] = v[42];
649: x[43] = v[43];
650: x[44] = v[44];
651: x[45] = v[45];
652: x[46] = v[46];
653: x[47] = v[47];
654: x[48] = v[48];
655: v += 49;
656: }
657: row = *ajtmp++;
658: while (row < i) {
659: pc = rtmp + 49 * row;
660: p1 = pc[0];
661: p2 = pc[1];
662: p3 = pc[2];
663: p4 = pc[3];
664: p5 = pc[4];
665: p6 = pc[5];
666: p7 = pc[6];
667: p8 = pc[7];
668: p9 = pc[8];
669: p10 = pc[9];
670: p11 = pc[10];
671: p12 = pc[11];
672: p13 = pc[12];
673: p14 = pc[13];
674: p15 = pc[14];
675: p16 = pc[15];
676: p17 = pc[16];
677: p18 = pc[17];
678: p19 = pc[18];
679: p20 = pc[19];
680: p21 = pc[20];
681: p22 = pc[21];
682: p23 = pc[22];
683: p24 = pc[23];
684: p25 = pc[24];
685: p26 = pc[25];
686: p27 = pc[26];
687: p28 = pc[27];
688: p29 = pc[28];
689: p30 = pc[29];
690: p31 = pc[30];
691: p32 = pc[31];
692: p33 = pc[32];
693: p34 = pc[33];
694: p35 = pc[34];
695: p36 = pc[35];
696: p37 = pc[36];
697: p38 = pc[37];
698: p39 = pc[38];
699: p40 = pc[39];
700: p41 = pc[40];
701: p42 = pc[41];
702: p43 = pc[42];
703: p44 = pc[43];
704: p45 = pc[44];
705: p46 = pc[45];
706: p47 = pc[46];
707: p48 = pc[47];
708: p49 = pc[48];
709: if (p1 != 0.0 || p2 != 0.0 || p3 != 0.0 || p4 != 0.0 || p5 != 0.0 || p6 != 0.0 || p7 != 0.0 || p8 != 0.0 || p9 != 0.0 || p10 != 0.0 || p11 != 0.0 || p12 != 0.0 || p13 != 0.0 || p14 != 0.0 || p15 != 0.0 || p16 != 0.0 || p17 != 0.0 || p18 != 0.0 || p19 != 0.0 || p20 != 0.0 || p21 != 0.0 || p22 != 0.0 || p23 != 0.0 || p24 != 0.0 || p25 != 0.0 || p26 != 0.0 || p27 != 0.0 || p28 != 0.0 || p29 != 0.0 || p30 != 0.0 || p31 != 0.0 || p32 != 0.0 || p33 != 0.0 || p34 != 0.0 || p35 != 0.0 || p36 != 0.0 || p37 != 0.0 || p38 != 0.0 || p39 != 0.0 || p40 != 0.0 || p41 != 0.0 || p42 != 0.0 || p43 != 0.0 || p44 != 0.0 || p45 != 0.0 || p46 != 0.0 || p47 != 0.0 || p48 != 0.0 || p49 != 0.0) {
710: pv = ba + 49 * diag_offset[row];
711: pj = bj + diag_offset[row] + 1;
712: x1 = pv[0];
713: x2 = pv[1];
714: x3 = pv[2];
715: x4 = pv[3];
716: x5 = pv[4];
717: x6 = pv[5];
718: x7 = pv[6];
719: x8 = pv[7];
720: x9 = pv[8];
721: x10 = pv[9];
722: x11 = pv[10];
723: x12 = pv[11];
724: x13 = pv[12];
725: x14 = pv[13];
726: x15 = pv[14];
727: x16 = pv[15];
728: x17 = pv[16];
729: x18 = pv[17];
730: x19 = pv[18];
731: x20 = pv[19];
732: x21 = pv[20];
733: x22 = pv[21];
734: x23 = pv[22];
735: x24 = pv[23];
736: x25 = pv[24];
737: x26 = pv[25];
738: x27 = pv[26];
739: x28 = pv[27];
740: x29 = pv[28];
741: x30 = pv[29];
742: x31 = pv[30];
743: x32 = pv[31];
744: x33 = pv[32];
745: x34 = pv[33];
746: x35 = pv[34];
747: x36 = pv[35];
748: x37 = pv[36];
749: x38 = pv[37];
750: x39 = pv[38];
751: x40 = pv[39];
752: x41 = pv[40];
753: x42 = pv[41];
754: x43 = pv[42];
755: x44 = pv[43];
756: x45 = pv[44];
757: x46 = pv[45];
758: x47 = pv[46];
759: x48 = pv[47];
760: x49 = pv[48];
761: pc[0] = m1 = p1 * x1 + p8 * x2 + p15 * x3 + p22 * x4 + p29 * x5 + p36 * x6 + p43 * x7;
762: pc[1] = m2 = p2 * x1 + p9 * x2 + p16 * x3 + p23 * x4 + p30 * x5 + p37 * x6 + p44 * x7;
763: pc[2] = m3 = p3 * x1 + p10 * x2 + p17 * x3 + p24 * x4 + p31 * x5 + p38 * x6 + p45 * x7;
764: pc[3] = m4 = p4 * x1 + p11 * x2 + p18 * x3 + p25 * x4 + p32 * x5 + p39 * x6 + p46 * x7;
765: pc[4] = m5 = p5 * x1 + p12 * x2 + p19 * x3 + p26 * x4 + p33 * x5 + p40 * x6 + p47 * x7;
766: pc[5] = m6 = p6 * x1 + p13 * x2 + p20 * x3 + p27 * x4 + p34 * x5 + p41 * x6 + p48 * x7;
767: pc[6] = m7 = p7 * x1 + p14 * x2 + p21 * x3 + p28 * x4 + p35 * x5 + p42 * x6 + p49 * x7;
769: pc[7] = m8 = p1 * x8 + p8 * x9 + p15 * x10 + p22 * x11 + p29 * x12 + p36 * x13 + p43 * x14;
770: pc[8] = m9 = p2 * x8 + p9 * x9 + p16 * x10 + p23 * x11 + p30 * x12 + p37 * x13 + p44 * x14;
771: pc[9] = m10 = p3 * x8 + p10 * x9 + p17 * x10 + p24 * x11 + p31 * x12 + p38 * x13 + p45 * x14;
772: pc[10] = m11 = p4 * x8 + p11 * x9 + p18 * x10 + p25 * x11 + p32 * x12 + p39 * x13 + p46 * x14;
773: pc[11] = m12 = p5 * x8 + p12 * x9 + p19 * x10 + p26 * x11 + p33 * x12 + p40 * x13 + p47 * x14;
774: pc[12] = m13 = p6 * x8 + p13 * x9 + p20 * x10 + p27 * x11 + p34 * x12 + p41 * x13 + p48 * x14;
775: pc[13] = m14 = p7 * x8 + p14 * x9 + p21 * x10 + p28 * x11 + p35 * x12 + p42 * x13 + p49 * x14;
777: pc[14] = m15 = p1 * x15 + p8 * x16 + p15 * x17 + p22 * x18 + p29 * x19 + p36 * x20 + p43 * x21;
778: pc[15] = m16 = p2 * x15 + p9 * x16 + p16 * x17 + p23 * x18 + p30 * x19 + p37 * x20 + p44 * x21;
779: pc[16] = m17 = p3 * x15 + p10 * x16 + p17 * x17 + p24 * x18 + p31 * x19 + p38 * x20 + p45 * x21;
780: pc[17] = m18 = p4 * x15 + p11 * x16 + p18 * x17 + p25 * x18 + p32 * x19 + p39 * x20 + p46 * x21;
781: pc[18] = m19 = p5 * x15 + p12 * x16 + p19 * x17 + p26 * x18 + p33 * x19 + p40 * x20 + p47 * x21;
782: pc[19] = m20 = p6 * x15 + p13 * x16 + p20 * x17 + p27 * x18 + p34 * x19 + p41 * x20 + p48 * x21;
783: pc[20] = m21 = p7 * x15 + p14 * x16 + p21 * x17 + p28 * x18 + p35 * x19 + p42 * x20 + p49 * x21;
785: pc[21] = m22 = p1 * x22 + p8 * x23 + p15 * x24 + p22 * x25 + p29 * x26 + p36 * x27 + p43 * x28;
786: pc[22] = m23 = p2 * x22 + p9 * x23 + p16 * x24 + p23 * x25 + p30 * x26 + p37 * x27 + p44 * x28;
787: pc[23] = m24 = p3 * x22 + p10 * x23 + p17 * x24 + p24 * x25 + p31 * x26 + p38 * x27 + p45 * x28;
788: pc[24] = m25 = p4 * x22 + p11 * x23 + p18 * x24 + p25 * x25 + p32 * x26 + p39 * x27 + p46 * x28;
789: pc[25] = m26 = p5 * x22 + p12 * x23 + p19 * x24 + p26 * x25 + p33 * x26 + p40 * x27 + p47 * x28;
790: pc[26] = m27 = p6 * x22 + p13 * x23 + p20 * x24 + p27 * x25 + p34 * x26 + p41 * x27 + p48 * x28;
791: pc[27] = m28 = p7 * x22 + p14 * x23 + p21 * x24 + p28 * x25 + p35 * x26 + p42 * x27 + p49 * x28;
793: pc[28] = m29 = p1 * x29 + p8 * x30 + p15 * x31 + p22 * x32 + p29 * x33 + p36 * x34 + p43 * x35;
794: pc[29] = m30 = p2 * x29 + p9 * x30 + p16 * x31 + p23 * x32 + p30 * x33 + p37 * x34 + p44 * x35;
795: pc[30] = m31 = p3 * x29 + p10 * x30 + p17 * x31 + p24 * x32 + p31 * x33 + p38 * x34 + p45 * x35;
796: pc[31] = m32 = p4 * x29 + p11 * x30 + p18 * x31 + p25 * x32 + p32 * x33 + p39 * x34 + p46 * x35;
797: pc[32] = m33 = p5 * x29 + p12 * x30 + p19 * x31 + p26 * x32 + p33 * x33 + p40 * x34 + p47 * x35;
798: pc[33] = m34 = p6 * x29 + p13 * x30 + p20 * x31 + p27 * x32 + p34 * x33 + p41 * x34 + p48 * x35;
799: pc[34] = m35 = p7 * x29 + p14 * x30 + p21 * x31 + p28 * x32 + p35 * x33 + p42 * x34 + p49 * x35;
801: pc[35] = m36 = p1 * x36 + p8 * x37 + p15 * x38 + p22 * x39 + p29 * x40 + p36 * x41 + p43 * x42;
802: pc[36] = m37 = p2 * x36 + p9 * x37 + p16 * x38 + p23 * x39 + p30 * x40 + p37 * x41 + p44 * x42;
803: pc[37] = m38 = p3 * x36 + p10 * x37 + p17 * x38 + p24 * x39 + p31 * x40 + p38 * x41 + p45 * x42;
804: pc[38] = m39 = p4 * x36 + p11 * x37 + p18 * x38 + p25 * x39 + p32 * x40 + p39 * x41 + p46 * x42;
805: pc[39] = m40 = p5 * x36 + p12 * x37 + p19 * x38 + p26 * x39 + p33 * x40 + p40 * x41 + p47 * x42;
806: pc[40] = m41 = p6 * x36 + p13 * x37 + p20 * x38 + p27 * x39 + p34 * x40 + p41 * x41 + p48 * x42;
807: pc[41] = m42 = p7 * x36 + p14 * x37 + p21 * x38 + p28 * x39 + p35 * x40 + p42 * x41 + p49 * x42;
809: pc[42] = m43 = p1 * x43 + p8 * x44 + p15 * x45 + p22 * x46 + p29 * x47 + p36 * x48 + p43 * x49;
810: pc[43] = m44 = p2 * x43 + p9 * x44 + p16 * x45 + p23 * x46 + p30 * x47 + p37 * x48 + p44 * x49;
811: pc[44] = m45 = p3 * x43 + p10 * x44 + p17 * x45 + p24 * x46 + p31 * x47 + p38 * x48 + p45 * x49;
812: pc[45] = m46 = p4 * x43 + p11 * x44 + p18 * x45 + p25 * x46 + p32 * x47 + p39 * x48 + p46 * x49;
813: pc[46] = m47 = p5 * x43 + p12 * x44 + p19 * x45 + p26 * x46 + p33 * x47 + p40 * x48 + p47 * x49;
814: pc[47] = m48 = p6 * x43 + p13 * x44 + p20 * x45 + p27 * x46 + p34 * x47 + p41 * x48 + p48 * x49;
815: pc[48] = m49 = p7 * x43 + p14 * x44 + p21 * x45 + p28 * x46 + p35 * x47 + p42 * x48 + p49 * x49;
817: nz = bi[row + 1] - diag_offset[row] - 1;
818: pv += 49;
819: for (j = 0; j < nz; j++) {
820: x1 = pv[0];
821: x2 = pv[1];
822: x3 = pv[2];
823: x4 = pv[3];
824: x5 = pv[4];
825: x6 = pv[5];
826: x7 = pv[6];
827: x8 = pv[7];
828: x9 = pv[8];
829: x10 = pv[9];
830: x11 = pv[10];
831: x12 = pv[11];
832: x13 = pv[12];
833: x14 = pv[13];
834: x15 = pv[14];
835: x16 = pv[15];
836: x17 = pv[16];
837: x18 = pv[17];
838: x19 = pv[18];
839: x20 = pv[19];
840: x21 = pv[20];
841: x22 = pv[21];
842: x23 = pv[22];
843: x24 = pv[23];
844: x25 = pv[24];
845: x26 = pv[25];
846: x27 = pv[26];
847: x28 = pv[27];
848: x29 = pv[28];
849: x30 = pv[29];
850: x31 = pv[30];
851: x32 = pv[31];
852: x33 = pv[32];
853: x34 = pv[33];
854: x35 = pv[34];
855: x36 = pv[35];
856: x37 = pv[36];
857: x38 = pv[37];
858: x39 = pv[38];
859: x40 = pv[39];
860: x41 = pv[40];
861: x42 = pv[41];
862: x43 = pv[42];
863: x44 = pv[43];
864: x45 = pv[44];
865: x46 = pv[45];
866: x47 = pv[46];
867: x48 = pv[47];
868: x49 = pv[48];
869: x = rtmp + 49 * pj[j];
870: x[0] -= m1 * x1 + m8 * x2 + m15 * x3 + m22 * x4 + m29 * x5 + m36 * x6 + m43 * x7;
871: x[1] -= m2 * x1 + m9 * x2 + m16 * x3 + m23 * x4 + m30 * x5 + m37 * x6 + m44 * x7;
872: x[2] -= m3 * x1 + m10 * x2 + m17 * x3 + m24 * x4 + m31 * x5 + m38 * x6 + m45 * x7;
873: x[3] -= m4 * x1 + m11 * x2 + m18 * x3 + m25 * x4 + m32 * x5 + m39 * x6 + m46 * x7;
874: x[4] -= m5 * x1 + m12 * x2 + m19 * x3 + m26 * x4 + m33 * x5 + m40 * x6 + m47 * x7;
875: x[5] -= m6 * x1 + m13 * x2 + m20 * x3 + m27 * x4 + m34 * x5 + m41 * x6 + m48 * x7;
876: x[6] -= m7 * x1 + m14 * x2 + m21 * x3 + m28 * x4 + m35 * x5 + m42 * x6 + m49 * x7;
878: x[7] -= m1 * x8 + m8 * x9 + m15 * x10 + m22 * x11 + m29 * x12 + m36 * x13 + m43 * x14;
879: x[8] -= m2 * x8 + m9 * x9 + m16 * x10 + m23 * x11 + m30 * x12 + m37 * x13 + m44 * x14;
880: x[9] -= m3 * x8 + m10 * x9 + m17 * x10 + m24 * x11 + m31 * x12 + m38 * x13 + m45 * x14;
881: x[10] -= m4 * x8 + m11 * x9 + m18 * x10 + m25 * x11 + m32 * x12 + m39 * x13 + m46 * x14;
882: x[11] -= m5 * x8 + m12 * x9 + m19 * x10 + m26 * x11 + m33 * x12 + m40 * x13 + m47 * x14;
883: x[12] -= m6 * x8 + m13 * x9 + m20 * x10 + m27 * x11 + m34 * x12 + m41 * x13 + m48 * x14;
884: x[13] -= m7 * x8 + m14 * x9 + m21 * x10 + m28 * x11 + m35 * x12 + m42 * x13 + m49 * x14;
886: x[14] -= m1 * x15 + m8 * x16 + m15 * x17 + m22 * x18 + m29 * x19 + m36 * x20 + m43 * x21;
887: x[15] -= m2 * x15 + m9 * x16 + m16 * x17 + m23 * x18 + m30 * x19 + m37 * x20 + m44 * x21;
888: x[16] -= m3 * x15 + m10 * x16 + m17 * x17 + m24 * x18 + m31 * x19 + m38 * x20 + m45 * x21;
889: x[17] -= m4 * x15 + m11 * x16 + m18 * x17 + m25 * x18 + m32 * x19 + m39 * x20 + m46 * x21;
890: x[18] -= m5 * x15 + m12 * x16 + m19 * x17 + m26 * x18 + m33 * x19 + m40 * x20 + m47 * x21;
891: x[19] -= m6 * x15 + m13 * x16 + m20 * x17 + m27 * x18 + m34 * x19 + m41 * x20 + m48 * x21;
892: x[20] -= m7 * x15 + m14 * x16 + m21 * x17 + m28 * x18 + m35 * x19 + m42 * x20 + m49 * x21;
894: x[21] -= m1 * x22 + m8 * x23 + m15 * x24 + m22 * x25 + m29 * x26 + m36 * x27 + m43 * x28;
895: x[22] -= m2 * x22 + m9 * x23 + m16 * x24 + m23 * x25 + m30 * x26 + m37 * x27 + m44 * x28;
896: x[23] -= m3 * x22 + m10 * x23 + m17 * x24 + m24 * x25 + m31 * x26 + m38 * x27 + m45 * x28;
897: x[24] -= m4 * x22 + m11 * x23 + m18 * x24 + m25 * x25 + m32 * x26 + m39 * x27 + m46 * x28;
898: x[25] -= m5 * x22 + m12 * x23 + m19 * x24 + m26 * x25 + m33 * x26 + m40 * x27 + m47 * x28;
899: x[26] -= m6 * x22 + m13 * x23 + m20 * x24 + m27 * x25 + m34 * x26 + m41 * x27 + m48 * x28;
900: x[27] -= m7 * x22 + m14 * x23 + m21 * x24 + m28 * x25 + m35 * x26 + m42 * x27 + m49 * x28;
902: x[28] -= m1 * x29 + m8 * x30 + m15 * x31 + m22 * x32 + m29 * x33 + m36 * x34 + m43 * x35;
903: x[29] -= m2 * x29 + m9 * x30 + m16 * x31 + m23 * x32 + m30 * x33 + m37 * x34 + m44 * x35;
904: x[30] -= m3 * x29 + m10 * x30 + m17 * x31 + m24 * x32 + m31 * x33 + m38 * x34 + m45 * x35;
905: x[31] -= m4 * x29 + m11 * x30 + m18 * x31 + m25 * x32 + m32 * x33 + m39 * x34 + m46 * x35;
906: x[32] -= m5 * x29 + m12 * x30 + m19 * x31 + m26 * x32 + m33 * x33 + m40 * x34 + m47 * x35;
907: x[33] -= m6 * x29 + m13 * x30 + m20 * x31 + m27 * x32 + m34 * x33 + m41 * x34 + m48 * x35;
908: x[34] -= m7 * x29 + m14 * x30 + m21 * x31 + m28 * x32 + m35 * x33 + m42 * x34 + m49 * x35;
910: x[35] -= m1 * x36 + m8 * x37 + m15 * x38 + m22 * x39 + m29 * x40 + m36 * x41 + m43 * x42;
911: x[36] -= m2 * x36 + m9 * x37 + m16 * x38 + m23 * x39 + m30 * x40 + m37 * x41 + m44 * x42;
912: x[37] -= m3 * x36 + m10 * x37 + m17 * x38 + m24 * x39 + m31 * x40 + m38 * x41 + m45 * x42;
913: x[38] -= m4 * x36 + m11 * x37 + m18 * x38 + m25 * x39 + m32 * x40 + m39 * x41 + m46 * x42;
914: x[39] -= m5 * x36 + m12 * x37 + m19 * x38 + m26 * x39 + m33 * x40 + m40 * x41 + m47 * x42;
915: x[40] -= m6 * x36 + m13 * x37 + m20 * x38 + m27 * x39 + m34 * x40 + m41 * x41 + m48 * x42;
916: x[41] -= m7 * x36 + m14 * x37 + m21 * x38 + m28 * x39 + m35 * x40 + m42 * x41 + m49 * x42;
918: x[42] -= m1 * x43 + m8 * x44 + m15 * x45 + m22 * x46 + m29 * x47 + m36 * x48 + m43 * x49;
919: x[43] -= m2 * x43 + m9 * x44 + m16 * x45 + m23 * x46 + m30 * x47 + m37 * x48 + m44 * x49;
920: x[44] -= m3 * x43 + m10 * x44 + m17 * x45 + m24 * x46 + m31 * x47 + m38 * x48 + m45 * x49;
921: x[45] -= m4 * x43 + m11 * x44 + m18 * x45 + m25 * x46 + m32 * x47 + m39 * x48 + m46 * x49;
922: x[46] -= m5 * x43 + m12 * x44 + m19 * x45 + m26 * x46 + m33 * x47 + m40 * x48 + m47 * x49;
923: x[47] -= m6 * x43 + m13 * x44 + m20 * x45 + m27 * x46 + m34 * x47 + m41 * x48 + m48 * x49;
924: x[48] -= m7 * x43 + m14 * x44 + m21 * x45 + m28 * x46 + m35 * x47 + m42 * x48 + m49 * x49;
925: pv += 49;
926: }
927: PetscCall(PetscLogFlops(686.0 * nz + 637.0));
928: }
929: row = *ajtmp++;
930: }
931: /* finished row so stick it into b->a */
932: pv = ba + 49 * bi[i];
933: pj = bj + bi[i];
934: nz = bi[i + 1] - bi[i];
935: for (j = 0; j < nz; j++) {
936: x = rtmp + 49 * pj[j];
937: pv[0] = x[0];
938: pv[1] = x[1];
939: pv[2] = x[2];
940: pv[3] = x[3];
941: pv[4] = x[4];
942: pv[5] = x[5];
943: pv[6] = x[6];
944: pv[7] = x[7];
945: pv[8] = x[8];
946: pv[9] = x[9];
947: pv[10] = x[10];
948: pv[11] = x[11];
949: pv[12] = x[12];
950: pv[13] = x[13];
951: pv[14] = x[14];
952: pv[15] = x[15];
953: pv[16] = x[16];
954: pv[17] = x[17];
955: pv[18] = x[18];
956: pv[19] = x[19];
957: pv[20] = x[20];
958: pv[21] = x[21];
959: pv[22] = x[22];
960: pv[23] = x[23];
961: pv[24] = x[24];
962: pv[25] = x[25];
963: pv[26] = x[26];
964: pv[27] = x[27];
965: pv[28] = x[28];
966: pv[29] = x[29];
967: pv[30] = x[30];
968: pv[31] = x[31];
969: pv[32] = x[32];
970: pv[33] = x[33];
971: pv[34] = x[34];
972: pv[35] = x[35];
973: pv[36] = x[36];
974: pv[37] = x[37];
975: pv[38] = x[38];
976: pv[39] = x[39];
977: pv[40] = x[40];
978: pv[41] = x[41];
979: pv[42] = x[42];
980: pv[43] = x[43];
981: pv[44] = x[44];
982: pv[45] = x[45];
983: pv[46] = x[46];
984: pv[47] = x[47];
985: pv[48] = x[48];
986: pv += 49;
987: }
988: /* invert diagonal block */
989: w = ba + 49 * diag_offset[i];
990: PetscCall(PetscKernel_A_gets_inverse_A_7(w, shift, allowzeropivot, &zeropivotdetected));
991: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
992: }
994: PetscCall(PetscFree(rtmp));
996: C->ops->solve = MatSolve_SeqBAIJ_7_NaturalOrdering_inplace;
997: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_NaturalOrdering_inplace;
998: C->assembled = PETSC_TRUE;
1000: PetscCall(PetscLogFlops(1.333333333333 * 7 * 7 * 7 * b->mbs)); /* from inverting diagonal blocks */
1001: PetscFunctionReturn(PETSC_SUCCESS);
1002: }
1004: PetscErrorCode MatLUFactorNumeric_SeqBAIJ_7_NaturalOrdering(Mat B, Mat A, const MatFactorInfo *info)
1005: {
1006: Mat C = B;
1007: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data, *b = (Mat_SeqBAIJ *)C->data;
1008: PetscInt i, j, k, nz, nzL, row;
1009: const PetscInt n = a->mbs, *ai = a->i, *aj = a->j, *bi = b->i, *bj = b->j;
1010: const PetscInt *ajtmp, *bjtmp, *bdiag = b->diag, *pj, bs2 = a->bs2;
1011: MatScalar *rtmp, *pc, *mwork, *v, *pv, *aa = a->a;
1012: PetscInt flg;
1013: PetscReal shift = info->shiftamount;
1014: PetscBool allowzeropivot, zeropivotdetected;
1016: PetscFunctionBegin;
1017: allowzeropivot = PetscNot(A->erroriffailure);
1019: /* generate work space needed by the factorization */
1020: PetscCall(PetscMalloc2(bs2 * n, &rtmp, bs2, &mwork));
1021: PetscCall(PetscArrayzero(rtmp, bs2 * n));
1023: for (i = 0; i < n; i++) {
1024: /* zero rtmp */
1025: /* L part */
1026: nz = bi[i + 1] - bi[i];
1027: bjtmp = bj + bi[i];
1028: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
1030: /* U part */
1031: nz = bdiag[i] - bdiag[i + 1];
1032: bjtmp = bj + bdiag[i + 1] + 1;
1033: for (j = 0; j < nz; j++) PetscCall(PetscArrayzero(rtmp + bs2 * bjtmp[j], bs2));
1035: /* load in initial (unfactored row) */
1036: nz = ai[i + 1] - ai[i];
1037: ajtmp = aj + ai[i];
1038: v = aa + bs2 * ai[i];
1039: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(rtmp + bs2 * ajtmp[j], v + bs2 * j, bs2));
1041: /* elimination */
1042: bjtmp = bj + bi[i];
1043: nzL = bi[i + 1] - bi[i];
1044: for (k = 0; k < nzL; k++) {
1045: row = bjtmp[k];
1046: pc = rtmp + bs2 * row;
1047: for (flg = 0, j = 0; j < bs2; j++) {
1048: if (pc[j] != 0.0) {
1049: flg = 1;
1050: break;
1051: }
1052: }
1053: if (flg) {
1054: pv = b->a + bs2 * bdiag[row];
1055: /* PetscKernel_A_gets_A_times_B(bs,pc,pv,mwork); *pc = *pc * (*pv); */
1056: PetscCall(PetscKernel_A_gets_A_times_B_7(pc, pv, mwork));
1058: pj = b->j + bdiag[row + 1] + 1; /* beginning of U(row,:) */
1059: pv = b->a + bs2 * (bdiag[row + 1] + 1);
1060: nz = bdiag[row] - bdiag[row + 1] - 1; /* num of entries inU(row,:), excluding diag */
1061: for (j = 0; j < nz; j++) {
1062: /* PetscKernel_A_gets_A_minus_B_times_C(bs,rtmp+bs2*pj[j],pc,pv+bs2*j); */
1063: /* rtmp+bs2*pj[j] = rtmp+bs2*pj[j] - (*pc)*(pv+bs2*j) */
1064: v = rtmp + bs2 * pj[j];
1065: PetscCall(PetscKernel_A_gets_A_minus_B_times_C_7(v, pc, pv));
1066: pv += bs2;
1067: }
1068: PetscCall(PetscLogFlops(686.0 * nz + 637)); /* flops = 2*bs^3*nz + 2*bs^3 - bs2) */
1069: }
1070: }
1072: /* finished row so stick it into b->a */
1073: /* L part */
1074: pv = b->a + bs2 * bi[i];
1075: pj = b->j + bi[i];
1076: nz = bi[i + 1] - bi[i];
1077: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
1079: /* Mark diagonal and invert diagonal for simpler triangular solves */
1080: pv = b->a + bs2 * bdiag[i];
1081: pj = b->j + bdiag[i];
1082: PetscCall(PetscArraycpy(pv, rtmp + bs2 * pj[0], bs2));
1083: PetscCall(PetscKernel_A_gets_inverse_A_7(pv, shift, allowzeropivot, &zeropivotdetected));
1084: if (zeropivotdetected) C->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
1086: /* U part */
1087: pv = b->a + bs2 * (bdiag[i + 1] + 1);
1088: pj = b->j + bdiag[i + 1] + 1;
1089: nz = bdiag[i] - bdiag[i + 1] - 1;
1090: for (j = 0; j < nz; j++) PetscCall(PetscArraycpy(pv + bs2 * j, rtmp + bs2 * pj[j], bs2));
1091: }
1092: PetscCall(PetscFree2(rtmp, mwork));
1094: C->ops->solve = MatSolve_SeqBAIJ_7_NaturalOrdering;
1095: C->ops->solvetranspose = MatSolveTranspose_SeqBAIJ_7_NaturalOrdering;
1096: C->assembled = PETSC_TRUE;
1098: PetscCall(PetscLogFlops(1.333333333333 * 7 * 7 * 7 * n)); /* from inverting diagonal blocks */
1099: PetscFunctionReturn(PETSC_SUCCESS);
1100: }